Что такое точка отмены и где она должна находиться? На этот вопрос нельзя дать прямой ответ. Точка отмены создается с помощью функции
pthread_testcancel
. Все, что она делает, — это обрабатывает отложенный запрос на отмену в синхронном потоке. Ее следует периодически вызывать в потоковой функции в ходе длительных вычислений, там, где поток можно завершить без риска потери ресурсов или других побочных эффектов.
Некоторые функции неявно создают точки отмены. О них можно узнать на
man
– странице, посвященной функции
pthread_cancel
. Учтите, что они могут вызываться в других функциях, которые, тем самым, косвенно станут точками отмены.
4.2.2. Неотменяемые
потоки
Поток может вообще отказаться удаляться, вызвав функцию
pthread_setcancelstate
. Как и в случае функции
pthread_setcanceltype
, это оказывает влияние только на вызывающий поток. Первый аргумент функции должен быть
PTHREAD_CANCEL_DISABLE
, если нужно запретить отмену потока, и
PTHREAD_CANCEL_ENABLE
в противном случае. Второй аргумент — это указатель на переменную, в которую записывается предыдущее состояние потока.
позволяет организовывать критические секции. Критической секцией называется участок программы, который должен быть либо выполнен целиком, либо вообще не выполнен. Другими словами, если поток входит в критическую секцию, он во что бы то ни стало должен дойти до ее конца.
Предположим, к примеру, что для банковской программы требуется написать функцию, осуществляющую перевод денег с одного счета на другой. Для этого нужно добавить заданную сумму на баланс одного счета и вычесть аналогичную сумму с баланса другого счета. Если между этими двумя операциями произойдет отмена потока, выполняющего функцию, программа ложно увеличит суммарный депозит банка вследствие незавершенной транзакции. Чтобы этого не случилось, обе операции должны выполняться в критической секции.
В листинге 4.6 показан пример функции
process_transaction
, осуществляющей данную задумку. Функция запрещает отмену потока до тех пор, пока баланс обоих счетов не будет изменен.
Листинг 4.6. (critical_section.c) Защита банковской транзакции с помощью критической секции
#include <pthread.h>
#include <stdio.h>
#include <string.h>
/* Массив балансов счетов, упорядоченный по номеру счета. */
float* account_balances;
/* перевод денежной суммы, равной параметру DOLLARS, со счета
FROM_ACCT на счет TO_ACCT. Возвращается 0, если транзакция
завершена успешно, или 1, если баланс счета FROM_ACCT
слишком мал. */
int process_transaction(int from_acct, int to_acct,
внимание на то, что по окончании критической секции восстанавливается предыдущее состояние потока, а не режим
PTHREAD_CANCEL_ENABLE
. Это позволит безопасно вызывать функцию
process_transaction
из другой критической секции.
4.2.3. Когда необходимо отменять поток
В общем случае не рекомендуется отменять поток, если его можно просто завершить. Лучше всего каким-то образом просигнализировать потоку о том, что он должен прекратить работу, а затем дождаться его завершения. Подробнее о способах взаимодействия с потоками речь пойдет ниже в этой главе.
4.3. Потоковые данные
В отличие от процессов, все потоки программы делят общее адресное пространство. Это означает, что если один поток модифицирует ячейку памяти (например, глобальную переменную), то это изменение отразится на всех остальных потоках. Таким образом, потоки могут работать с одними и теми же данными, не используя механизмы межзадачного взаимодействия (рассматриваются в главе 5, "Взаимодействие процессов").
Тем не менее у каждого потока — свой собственный стек вызова. Это позволяет всем потокам выполнять разный код, а также вызывать функции традиционным способом. При каждом вызове функции в любом потоке создается отдельный набор локальных переменных, которые сохраняются в стеке этого потока.
Иногда все же требуется продублировать определенную переменную, чтобы у каждого потока была ее собственная копия. С этой целью операционная система Linux предоставляет потокам область потоковых данных. Переменные, сохраняемые в этой области, дублируются для каждого потока, что позволяет потокам свободно работать с ними, не мешая друг другу. Доступ к потоковым данным нельзя получить с помощью ссылок на обычные переменные, ведь у потоков общее адресное пространство. В Linux имеются специальные функции для чтения и записи значений, хранящихся в области потоковых данных.
Можно создать сколько угодно потоковых переменных, при этом все они должны иметь тип
void*
. Ссылка на каждую переменную осуществляется по ключу. Для создания нового ключа, т.е. новой переменной, предназначена функция
pthread_key_create
. Первым ее аргументом является указатель на переменную типа
pthread_key_t
. В нее будет записано значение ключа, посредством которого любой поток сможет обращаться к своей копии данных. Второй аргумент — это указатель на функцию очистки ключа. Она будет автоматически вызываться при уничтожении потока; ей передается значение ключа, соответствующее данному потоку. Это очень удобно, так как функция очистки вызывается даже в случае отмены потока в произвольной точке. Если потоковая переменная равна
NULL
, функция очистки не вызывается. Если же такая функция не нужна, задайте в качестве второго параметра функции
pthread_key_create
значение
NULL
.
После того как ключ создан, каждый поток может назначать ему собственное значение, вызывая функцию
pthread_setspecific
. Ее первый аргумент — это ключ, а второй — требуемое значение типа
void*
. Для чтения потоковых переменных предназначена функция
pthread_getspecific
, единственным аргументом которой является ключ.
Предположим, имеется приложение, распределяющее задачу между несколькими потоками. В целях аудита за каждым потоком закреплен отдельный журнальный файл, куда записываются сообщения о ходе выполнения поставленной задачи. Область потоковых данных — удобное место для хранения указателя на журнальный файл каждого потока.