Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства
Шрифт:
На той вечеринке было полно ученых, и потому человек, с которым я разговаривал, не отреагировал на мои рассуждения так, как большинство людей, – то есть не бросился за новым бокалом «шардоннэ», внезапно осознав, что оно закончилось. Моя собеседница, напротив, с изумлением переспросила: «Средневековые ученые? Да ладно вам. Они оперировали без наркоза. Они составляли снадобья из сока латука, цикуты и желчи дикого борова. Сам Фома Аквинский, кажется, верил в ведьм?» Тут-то она меня к стенке и приперла. Я понятия не имел обо всем этом. Но потом проверил, и она оказалась права. И все же, несмотря на ее по всей видимости энциклопедические знания определенных сторон средневековой медицинской практики, она не слыхала о более значимых начинаниях в области физики, которые по сравнению с состоянием средневекового знания в других областях показались мне совсем уж чудесными. И потому, хоть и пришлось мне признать, что к средневековому врачу, прибудь он в наш век на машине времени, я бы не пошел, в отношении прогресса, которого средневековые ученые добились в физических изысканиях, я в своей правоте не сомневался.
Так что же они насвершали, эти забытые герои физики? Для начала,
Хотя ученые из Мёртона всеобъемлющих законов движения не открыли, чутье подсказывало им, что законы эти существуют, и они подготовили почву для открытия – тем, кто пришел на века позже. Важнее всего созданная ими зачаточная теория движения, не имевшая ничего общего с наукой, изучавшей другие виды перемен, – и ничего общего с понятием о предназначении.
Задача, которую мёртонские ученые взялись решать, простой не была: математика, потребная даже для простейшего анализа движения, все еще оставалась примитивной. Но была и другая неувязка, и преодоление ее стало даже большей победой, чем успех силами наличной в то время математики, ибо речь не о технической преграде, а об ограничении, навязанном образом мыслей людей о мире: мёртонцы были, подобно Аристотелю, зажаты рамками мировосприятия, в котором время играло роль преимущественно качественного субъективного параметра.
Мы, воспитанные в культуре развитого мира, переживаем ход времени совсем не так, как его воспринимали жившие в ранние эпохи. Большую часть существования человечества время считалось чрезвычайно эластичной сеткой, растягивавшейся и сжимавшейся очень субъективно. Научиться воспринимать время как что-то не внутреннее, личное – трудный шаг с большими последствиями и столь же значимый прорыв в науке, каким было развитие языка или осознание, что мир можно постичь рассуждением.
К примеру, поиск закономерностей в продолжительности событий – представить, что камень, падающий с высоты в шестнадцать футов, всегда долетает до земли за одну секунду, было бы в эпоху мыслителей Мёртона революционным видением. Для начала никто понятия не имел, как измерять время хоть с какой-то точностью, а о минутах и секундах никто и не слыхивал [153] . Первые часовые механизмы, показывающие часы одинаковой продолжительности, изобрели не раньше 1330 годов. До этого световой день, сколько бы ни длился, делили на двенадцать равных интервалов, а это означало, что «час» мог быть в июне в два с лишним раза дольше, чем в декабре (в Лондоне, например, он колебался от 38 до 82 современных минут). Из того, что это никого не беспокоило, следует, что людям ничего больше приблизительной качественной оценки проходящего времени не требовалось. И поэтому само понятие скорости – расстояния, преодоленного за единицу времени, – уж точно должно было казаться диковиной.
153
Широкий и удобочитаемый обзор истории понятия времени приводится в книге: David Landes, Revolution in Time: Clocks and the Making of the Modern World (Cambridge, Mass.: Belknap Press of the Harvard University Press, 1983).
С учетом всех препятствий, то, что ученым Мёртона удалось создать понятийное основание исследования движения, кажется чудом. И все же они сформулировали первое в мире количественное правило движения – «мёртонское» [154] : «Расстояние, пройденное телом, равномерно ускоряющимся из положения покоя, равно расстоянию, пройденному телом, движущимся то же время со скоростью, половинной от предельной у ускоряющегося тела».
Ну и формулировочка, прямо скажем. Я с ней знаком давно, однако смотрю сейчас на нее и понимаю, что пришлось дважды прочитать, что написано, чтобы понять, о чем это. И все же смутность такого выражения служит определенной цели: она показывает, насколько проще стала наука с тех пор, как ученые поняли, как применять – и изобретать, вообще говоря, – подходящую математику.
154
Lindberg, Beginnings of Western Science, стр. 303–304.
В современном математическом языке расстояние, пройденное телом, равномерно ускоряющимся из состояния покоя, можно записать как (a х t2)/2. Вторая величина, расстояние, пройденное телом, движущимся то же время со скоростью, половинной от предельной у ускоряющегося тела, есть попросту (a х t) х t/2. Таким образом, приведенная формулировка мёртонского правила, переложенная на язык математики, такова: (а х t2)/2 = (а
х t) х t/2. Она не просто компактнее, но и делает истинность высказывания мгновенно очевидной – по крайней мере, для всех, кто уже немножко знает алгебру.Если ваши дни занятий алгеброй давно позади, спросите любого шестиклассника – он или она поймут написанное. Вообще-то средний шестиклассник в наши дни знает гораздо больше математики, чем даже самый передовой ученый в XIV веке. Можно ли будет утверждать то же самое о детях XXVIII века и ученых XXI-го – интересный вопрос. До сих пор владение математикой с каждым веком постоянно прогрессировало.
Бытовой пример того, о чем гласит правило Мёртона: если вы разгоняете автомобиль постоянно, с нулевой скорости до ста миль в час, вы пройдете то же расстояние, как если бы все время ехали со скоростью пятьдесят миль в час. Смахивает на то, как меня пилит моя мама за слишком прыткое вождение, но, хоть для нас с вами мёртонское правило – простой здравый смысл, мёртонцы не могли его доказать. Тем не менее, правило произвело некоторый фурор в интеллектуальном мире того времени [155] и быстро добралось и до Франции, и до Италии, и распространилось далее по Европе. Доказательство получилось довольно скоро, по ту сторону Ла-Манша, где в Университете Парижа трудились французские коллеги мёртонских ученых. Автор доказательства – Николай Орем (1320–1382), философ и теолог, позднее дослужившийся до епископа Лизьё. Чтобы произвести это доказательство, Орему потребовалось то же, что и всем физикам за всю историю науки, вновь и вновь: изобрести новую математику.
155
Clifford Truesdell, Essays in the History of Mechanics (New York: SpringerVerlag, 1968).
Раз математика – язык физики, недостаток подходящей математики не дает физику выражаться или даже рассуждать на заданную тему. Быть может, сложная незнакомая математика, понадобившаяся Эйнштейну, чтобы сформулировать общую теорию относительности, однажды вдохновила его сказать одной юной школьнице: «Не тревожьтесь о ваших трудностях с математикой – уверяю вас: мои куда больше» [156] . Или же, как говорил Галилей, «книга [природы] не может быть понята, если сначала не научиться понимать язык и читать буквы, которыми она написана. Она написана на языке математики, а знаки ее – треугольники, окружности и другие геометрические фигуры, без которых понять хоть одно слово – выше человеческих сил; без этого – лишь бродить в темном лабиринте» [157] .
156
Альберт Эйнштейн, из письма, датированного 7 января 1943 года, цит. по: Helen Dukas, Banesh Hoffman, Albert Einstein: The Human Side; New Glimpses from His Archives (Princeton, N.J.: Princeton University Press, 1979), стр. 8.
157
Galileo Galilei, Discoveries and Opinions of Galileo (New York: Doubleday, 1957), стр. 237–238.
Дабы озарить светом этот темный лабиринт, Орем изобрел разновидность диаграмм, предназначенных для представления физики мёртонского правила. И хотя сам он понимал свои диаграммы не так, как мы в наши дни, можно считать их первым геометрическим представлением физики движения – а значит, и первым графиком.
Я всегда считал странным, что люди знают изобретателя математического анализа, хотя мало кто им пользуется, но при этом мало кто знает изобретателя графиков, однако ими пользуются все. Думаю, всё здесь оттого, что в наше время понятие графика представляется очевидным. Но в средние века мысль о том, что количества можно отображать линиями и фигурами в пространстве, была поразительно свежей и революционной, а может, и чуточку чокнутой.
Покажу вам, насколько трудно добиться даже самого простого изменения в образе человеческой мысли, – вспомним историю еще одного чокнутого изобретения, решительно нематематического: самоклеящиеся бумажки «Пост-ит», те листочки бумаги с клейкой полоской многоразового использования с одной стороны, которые можно легко приделывать к разным предметам. «Пост-ит» изобрел в 1974 году Арт Фрай, инженер-химик из компании «3М». Но предположим, что их тогда не изобрели, и вот прихожу я к вам, к инвестору, сегодня с этой затеей и бумажной пачечкой-прототипом. Вы тут же поймете, что это золотая жила, и ринетесь деньги вкладывать, да?
Как ни странно, а большинство-то людей, вероятно, не ринется: Фрай представил свою задумку маркетологам в «3М», компании, известной и клеящими продуктами, и новациями, и они как-то не вдохновились и решили, что продавать этот продукт будет непросто, потому что ему придется конкурировать по ценам с бумагой для заметок, которую новинка должна была вытеснить. Чего ж они не бросились к сокровищу, которое Фрай им предложил? [158] Потому что в до-«Пост-ит»-овую эпоху сама мысль, что кому-то может понадобиться лепить клочок бумаги со слабой клеевой полоской на вещи, была за пределами человеческого воображения. И потому Артуру Фраю труднее было изменить способ человеческого мышления, нежели изобрести новый продукт. Уж если с самоклеящимися бумажками пришлось принять неравный бой, можно лишь вообразить, до чего трудно пришлось тем, кто занимался вещами куда значимее.
158
Henry Petroski, The Evolution of Useful Things (New York: Knopf, 1992), стр. 84–86.