Чтение онлайн

ЖАНРЫ

Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства
Шрифт:

Что движет снарядом после того, как к нему приложена начальная сила? Аристотель предположил, что его толкают частицы воздуха, устремляющиеся вслед снаряду, но даже сам он к своему объяснению относился критически, и мы в этом уже убедились.

Галилей взялся разбираться с этой темой, вообразив корабль в море: в трюме моряки играют в салки, летают бабочки, в склянке на столе плавают рыбки, из бутылки капает вода. Он «заметил», что все это происходит одинаково независимо от того, движется корабль равномерно или же покоится. Галилей заключил, что, поскольку все на корабле движется вместе с ним, движение корабля должно «запечатлеваться» на предметах у него на борту, и когда корабль начинает двигаться, его движение становится чем-то вроде подложки для всего, что на нем находится. Может ли движение снаряда быть на нем «запечатлено»? Может ли это быть силой, поддерживающей полет пушечного ядра?

Размышления Галилея привели его к глубочайшему выводу – и к еще одному разрыву с Аристотелевой физикой. Отвергнув утверждение Аристотеля о том, что снаряду для

движения нужна причина – сила, Галилей заявил, что все тела, находящиеся в равномерном движении, обыкновенно продолжают двигаться равномерно и дальше, в точности как тела в покое покоятся и далее.

Под «равномерным» Галилей понимал движение по прямой и с постоянной скоростью. Положение «покоя» – попросту пример равномерного движения, в котором скорость равна нулю. Наблюдение Галилея стало называться законом инерции. Ньютон позднее видоизменил его и сделал первым законом движения.

Через несколько страниц после формулировки закона Ньютон добавляет, что открыл его Галилей – редкий случай, когда Ньютон вообще отдавал кому-нибудь должное [170] .

На основании рассказанного мной о Галилее отцу, он, любивший сравнивать любого значимого человека с какой-нибудь фигурой в иудейской истории, назвал Галилея Моисеем науки. Он сказал, это потому, что Галилей вывел науку из Аристотелевой пустыни к земле обетованной. Сравнение это тем более действительно вот из-за чего: подобно Моисею, сам Галилей до обетованной земли не добрался – не выделил гравитацию как силу, не смог описать ее математически, чего пришлось ждать до Ньютона, и по-прежнему цеплялся за некоторые Аристотелевы взгляды. К примеру, Галилей верил в некое «естественное движение», которое не равномерно, однако не требует силы для того, чтобы начаться: движение вокруг центра Земли. Галилей, судя по всему, думал, что это разновидность естественного движения, позволяющего телам никуда не деваться с вращающейся планеты.

170

Richard Westfall, Force in Newton’s Physics (New York: MacDonald, 1971), 1–4. На самом деле Жан Буридан, наставник Орема в Париже, обнаружил похожий закон в понятиях мёртонской школы, хотя и близко не так отчетливо, как Галилей. См. также John Freely, Before Galileo: The Birth of Modern Science in Medieval Europe (New York: Overlook Duckworth, 2012), стр. 162–163.

Чтобы родилась настоящая наука движения, необходимо было отринуть и эти пережитки Аристотелевой системы взглядов. По этим причинам один историк писал о Галилеевых представлениях о природе как о «невозможной амальгаме несовместимых элементов, порожденной взаимоисключающими мировоззрениями, меж которых он оказался» [171] .

* * *

Вклад Галилея в физику подлинно революционен. Однако знаменит он в наши дни в основном конфликтом с Католической церковью, возникшим из-за его утверждения, противоположного взглядам Аристотеля (и Птолемея), что Земля – не центр Вселенной, а лишь обычная планета, вращающаяся, как и все остальные, вокруг Солнца. Представление о гелиоцентрической Вселенной существовало со времен Аристарха, с III века до н. э., но за современное видение можно благодарить Коперника (1473–1543).

171

Westfall, Force in Newton’s Physics, стр. 41–42.

Коперник – довольно противоречивый революционер науки, не ставивший цели критиковать метафизику своего времени; он просто разбирался с древнегреческой астрономией: ему не давало покоя, что для того, чтобы придать геоцентрической модели Вселенной [172] устойчивость, необходимо было водить множество специальных геометрических построений. Его модель, напротив, была куда точнее и проще, даже изящнее. В согласии с духом Возрождения он ценил не только научную достоверность, но и эстетичность замысла. «Думаю, в это проще верить, – писал он, – нежели вносить путаницу множеством Сфер, какие нужны, чтобы Земля оставалась в средине» [173] .

172

Bernal, Science in History, 406–410; McClellan, Dorn, Science and Technology, стр. 208–214.

173

Bernal, Science in History, стр. 408.

Коперник сначала, в 1514 году, описал свою модель только для себя, а потом не одно десятилетие производил астрономические наблюдения в поддержку этой модели. Но, подобно Дарвину столетия спустя, он излагал свои представления в кругу близких доверенных друзей, боясь осуждения народа и Церкви. И все же Коперник ощущал опасность, а также понимал, что при должных политических маневрах реакция Церкви может быть смягчена, и когда Коперник наконец все же опубликовал свою работу,

он посвятил ее Папе, с пространным объяснением, почему его взгляды – не ересь.

В конце концов труд Коперника так и остался достоянием ученых кругов: он не был опубликован вплоть до 1543 года, а к тому времени Коперник уже лежал на смертном одре – говорят, свою напечатанную книгу он увидел лишь в день смерти. Как ни удивительно, даже после издания книга ни на что не повлияла, пока позднейшие ученые, в том числе Галилей, не приняли его взглядов и не начали говорить о них.

Хотя Галилей не сам придумал, что Земля – не центр Вселенной, он привнес нечто не менее важное: применив телескоп (который собрал сам, на основе гораздо более простой модели, изобретенной незадолго до этого), он обнаружил поразительные и убедительные доказательства этой модели.

Все началось случайно. В 1597 году Галилей писал и давал лекции в Падуе о Птолемеевой системе, почти никак не показывая, что сомневается в ее состоятельности [174] . Меж тем, примерно тогда же в Голландии произошел случай, напоминающий нам о том, как важно оказаться в нужном месте (Европа) в нужное время (в частности, всего через несколько десятилетий после Коперника). Случай, который в конце концов заставил Галилея сменить точку зрения, произошел с двумя детьми, которые играли в лавке никому не известного изготовителя очков по имени Ханс Липперсгей [Липперсхэй], – они приложили друг к другу две линзы и посмотрели сквозь них на флюгер на шпиле далекой городской церквушки. Он оказался увеличенным. Галилей позднее записал, что Липперсгей глянул сквозь эти две линзы, «одну выпуклую, другую вогнутую… и увидел неожиданное; вот и [изобрел] инструмент» [175] . Он создал подзорную трубу.

174

Впрочем, он питал некоторую склонность к модели Коперника, видоизмененной немецким астрономом (и астрологом) Иоганном Кеплером, в основном потому, что она подкрепляла его собственную любимую теорию приливов (которые он ошибочно объяснял воздействием Солнца). И все же, когда Кеплер попросил Галилея высказаться в поддержку этой модели, Галилей отказался.

175

Daniel Boorstin, The Discoverers (New York: Vintage, 1983), стр. 314.

Мы склонны представлять себе развитие науки как череду открытий, каждое ведет к следующему путем усилий отдельных интеллектуальных исполинов, располагающих ясным и необычным видением. Но видение великих открытий в интеллектуальной истории куда чаще замутнено, чем ясно, а своими достижениями они обязаны в большей мере друзьям и коллегам – и удаче, – нежели выходит, если судить по легендам и по признаниям самих первооткрывателей. В данном случае подзорная труба Липперсгея давала всего двух– или трехкратное увеличение, и когда Галилей несколько лет спустя, в 1609 году, впервые о ней услышал, его это не очень впечатлило. Интересно ему стало лишь потому, что его друг Паоло Сарпи, описанный историком Дж. Л. Хейлброном как «непримиримо анти-иезуитский монах-энциклопедист», усмотрел в этом приспособлении потенциал – он подумал, что, если это изобретение усовершенствовать, его можно отлично применить для военных нужд Венеции, не укрепленного стенами города, чье выживание зависело от своевременного обнаружения угрозы вражеского нападения.

Сарпи обратился за помощью к Галилею, который, среди многого всякого, что делал ради подпитки своих доходов, занимался созданием научных инструментов. Ни Сарпи, ни Галилей никакой теорией оптики не владели, однако методом проб и ошибок Галилей за несколько месяцев смог создать прибор, позволявший девятикратное увеличение. Он подарил это преисполнившемуся благоговением Венецианскому сенату в обмен на пожизненное продление свой ставки и удвоения своей тогдашней платы за труды до тысячи скуди. Галилей постепенно усовершенствовал свой телескоп до тридцатикратного увеличения, а это практический предел для телескопа такой конструкции (плоско-вогнутый визир и плоско-выпуклый объектив).

Примерно в декабре 1609 года, когда Галилей уже добился от своего телескопа двадцатикратного увеличения, он обратил его ввысь и нацелился на крупнейший объект ночного небосвода – Луну. Это наблюдение – и другие, сделанные им же, – подарило нам лучшее для того времени доказательство, что Коперник верно определил место, которое планета Земля занимает в мироздании.

Аристотель утверждал, что небеса образуют отдельное царство, из другой материи, и оно подчиняется другим законам, из-за которых все небесные тела вращаются вокруг Земли. Галилей же увидел, что Луна, «неровная, шершавая, вся в вогнутостях и выпуклостях, не отличается от лика земного, изрезанного горными цепями и глубокими долами» [176] . Луна, иными словами, не казалась телом другого «царства». Галилей увидел также, что у Юпитера есть свои луны. Факт, что луны эти обращаются вокруг Юпитера, а не вокруг Земли, противоречил космологии Аристотеля, зато поддерживал представление о том, что Земля – не центр Вселенной, а лишь одна из многих планет в ней.

176

Freely, Before Galileo, стр. 272.

Поделиться с друзьями: