Путешествие от частицы до Вселенной. Математика газовой динамики
Шрифт:
Поскольку тело стремится рассеять энергию как можно эффективнее, структуры такого типа называются диссипативными системами. В следующих абзацах вы увидите, что результаты, касающиеся поведения динамических систем и типов равновесия, окажутся крайне важными для понимания диссипативных систем.
При изучении таких систем нужно различать ситуации, близкие и далекие от равновесия. Предположим, что у нас в контейнере газ комнатной температуры: поскольку его температура и число частиц остаются постоянными, мы можем сделать вывод, что он находится в состоянии стабильного равновесия, или, другими словами, в неподвижной точке динамической системы. Но если сейчас мы слегка поколеблем газ, например слегка ударим контейнер, то мы изменим распределение его молекул. Однако вспомним главный признак стабильного равновесия: после небольшого отклонения от
Если мы обеспечим приток к газу большого количества энергии, все изменится. Наша динамическая система выйдет из сферы влияния аттрактора, и ее поведение перестанет быть предсказуемым. Однако изучение динамических систем позволяет нам сделать некоторые важные прогнозы. Например, мы знаем, что газ будет стремиться к новому аттрактору, если дать ему достаточно времени. Если нам известны различные аттракторы нашей динамической системы, мы можем рассчитать несколько траекторий ее поведения после выхода из состояния равновесия.
Одна траектория приведет газ к другой неподвижной точке: в этом случае следует ждать, что система остановится в ней, что будет сопровождаться новыми показателями давления, объема и температуры. Другой вариант — это стремление системы к предельному циклу: в этом случае следует ждать ее периодического поведения, при котором характеристики газа будут меняться предсказуемым образом.
Наконец, возможно и хаотическое движение, заданное странным аттрактором. Подобное мы наблюдаем ежедневно в прогнозах погоды: нам известны некоторые параметры климата, но точно предсказать его мы не можем.
Бельгийский физик Илья Пригожин, изучавший диссипативные системы, объяснил несколько примеров сложного поведения с помощью обычных инструментов термодинамики. Один из самых иллюстративных примеров поведения жидкости вне состояния равновесия — это ячейки Бенара.
* * *
ИЛЬЯ ПРИГОЖИН (1917–2003)
Илья Пригожин был бельгийским ученым, который получил Нобелевскую премию по химии за изучение диссипативных систем. Пригожин родился в России, но его семья бежала в Бельгию из-за преследований коммунистического режима. Учился он в Бельгии и в 1949 году получил бельгийское гражданство. Ученый провел свои последние годы, пытаясь разрешить задачу стрелы времени: почему время движется от прошлого к будущему, а не наоборот. В своих работах Пригожин пришел к выводу, что увеличение энтропии — такой же фундаментальный закон, как и законы квантовой механики, но его выводы до сих пор не нашли признания в научном сообществе.
* * *
Ячейки Бенара получаются при нагревании жидкости снизу и обязаны эффекту гравитации в сочетании с разницей в плотности, вызванной воздействием тепла. Если жидкость нагревать, ее температура повышается, что ведет к более быстрому движению молекул и, в свою очередь, к потере плотности. Поскольку более тяжелые тела стремятся вниз, теплая жидкость будет подниматься, а холодная жидкость с поверхности — опускаться. Это создает конвекционное движение, похожее на представленное на рисунке.
Когда тепла достаточно, конвекция во всей жидкости прекращается и наблюдается в меньшем масштабе, образуя конвекционную ячейку. В структуре жидкости можно выделить небольшие ячейки, в каждой из которых происходит уменьшенный вариант конвекции в крупном масштабе.
* * *
ПОЧЕМУ ДАЖЕ В ОТАПЛИВАЕМОМ ПОМЕЩЕНИИ НОГИ МЕРЗНУТ
Конвекционное движение газа объясняет многие обычные явления: например, бриз в любом морском городе —
это результат разницы в температурах воздуха над морем и сушей. Теплый воздух в наших домах имеет меньшую плотность, чем холодный, поэтому он стремится подниматься. По этой причине батареи устанавливают как можно ниже, чтобы они грели воздух над полом. И несмотря на это, нижний слой воздуха всегда имеет самую низкую температуру в комнате, так что наши ноги всегда остаются холодными. Единственный способ решить проблему мерзнущих ног — установить систему подогрева полов.* * *
В ячейках Бенара мы наблюдаем упорядоченное состояние жидкости, следовательно, они характеризуются гораздо меньшей энтропией, чем при глобальной конвекции всей жидкости. Однако благодаря тому, что такие ячейки рассеивают энергию лучше, чем другие структуры, жидкость стремится к этому состоянию. Рассмотрим пример того, как условия неравновесия вызывают появление определенной структуры — это явление, называемое самоорганизацией, наблюдается в большом количестве систем. Самоорганизация — базовое понятие для описания живых существ, которые, похоже, являются крайним случаем диссипативной структуры.
У ячеек Бенара есть и другие любопытные свойства. Например, направление движения жидкости в них хаотично меняется при каждом эксперименте, как в случае с бифуркацией функций, чувствительных к начальным условиям, которые были рассмотрены в главе 2. Поскольку ни газ, ни источник тепла не имеют предпочитаемого направления вращения, мы также наблюдаем случай симметричного вращения: начальная ситуация симметрична относительно направления вращений, но жидкость в ячейках Бенара принимает только какое-то одно направление вращения, но никогда — оба одновременно.
Если количество тепла продолжает расти, ячейки Бенара исчезают и на смену им приходит хаотичное, абсолютно непредсказуемое движение жидкости. Это совпадает с присутствием странных аттракторов для некоторых значений притока энергии. Можно посчитать, что появление кажущейся сложности движения, похоже, ограничено некоторыми значениями потока энергии.
Предыдущий анализ можно применить и к земной атмосфере, а именно к явлению, известному как глобальное потепление. Сегодня ученые начинают называть его просто изменением климата, и для этого есть свои причины.
Атмосферу можно рассматривать как диссипативную систему, поскольку она поглощает энергию Солнца и рассеивает ее с максимальным эффектом. Климат Земли был относительно стабильным в течение сотен лет, и только в последние десятилетия он начал характеризоваться значительными изменениями, вызванными, как считают ученые, деятельностью людей.
Поведение климата можно понять, если рассмотреть атмосферу как динамическую систему. Стабильность климата в течение нескольких веков указывает на то, что система располагалась рядом с аттрактором. Хотя солнечное излучение со временем слегка меняется, динамическая система после небольших отклонений стремится вернуться к точке равновесия, двигаясь по относительно постоянной модели. Однако когда нарушения очень сильны, система выходит из области влияния аттрактора, после чего ее поведение становится непредсказуемым. Можно только сказать, что она будет двигаться по фазовому пространству, пока не найдет новый аттрактор, но каким он будет, узнать невозможно. Это соответствует тем изменениям климата, которые мы наблюдаем: человеческая деятельность вызвала большие отклонения в составе атмосферы, и это влечет изменение привычных климатических моделей. Но невозможно знать, где это изменение остановится, поэтому многие ученые предпочитают говорить не о глобальном потеплении, а об изменении климата. Другими словами, глобальное потепление — это наблюдаемое нами проявление нарушений климатических моделей, но конечное их развитие необязательно будет соответствовать потеплению.
Собственно, этим и объясняется общая тревога в научном сообществе: мы нарушили атмосферу так сильно, что развитие этой системы стало непредсказуемым. Мы не знаем ни когда вернемся в состояние стабильности, ни к какому состоянию стабильности придем. А поскольку большая часть мировой экономики построена вокруг известных климатических моделей, внезапная их смена катастрофична. Например, огромный вред может быть нанесен сельскому хозяйству, поскольку ему нужны стабильные климатические модели, и изменение в цикле времен года может вызвать голод на планете.