Радио и телевидение?.. Это очень просто!
Шрифт:
Выпуклые участки трубки легче, чем плоские, выдерживают высокое давление. Поэтому раньше трубки изготовляли с весьма выпуклым экраном. В наши дни научились делать экраны достаточно прочными, чтобы даже при плоской форме они успешно выдерживали давление воздуха. Поэтому риск взрыва, направленного внутрь, исключен. Я умышленно сказал взрыва, направленного внутрь, а не просто взрыва, так как если разрывается электронно-лучевая трубка, то ее осколки устремляются внутрь.
В старых телевизорах из предосторожности перед экраном устанавливали толстое защитное стекло. В настоящее время обходятся без него.
Плоский экран будущего
Ты
Использование интегральных схем даст возможность до минимума сократить размер многочисленных схем, составляющих электрическую часть телевизора. Применение интегральных схем уже получило широкое распространение.
И наконец, если все ручки и кнопки управления телевизором придется размещать на окружающей экран раме, то наиболее вероятно, что для регулировки телевизора будут применяться дистанционные устройства управления. Не поднимаясь со своего кресла, телезритель сможет переключать телевизор с одной программы на другую, изменять яркость и контрастность изображения и громкость звукового сопровождения. Для этой цели у него под рукой будет маленькая коробочка, излучающая электромагнитные волны или ультразвуки, которые заставят телевизор произвести все заданные переключения и регулировки. Впрочем, такие устройства уже существуют, но пока не получили широкого распространения…
А теперь вернемся из будущего в настоящее. Я предоставляю Любознайкину возможность объяснить тебе, как электронно-лучевые трубки в настоящее время используются для передачи и приема телевизионных изображений.
Беседа шестнадцатая
ГЕНЕРАТОРЫ РАЗВЕРТОК
Какова форма токов, обеспечивающих развертку электронных лучей? Как получают такие токи? Каким образом электронные лучи в телевизионных приемниках синхронизируются с электронными лучами, пробегающими по передаваемому изображению? Все эти проблемы служат предметом настоящей беседы.
Отклонение пилообразным током
Незнайкин. — Теперь благодаря объяснениям твоего дядюшки я знаю, как устроены применяемые в телевизорах электронно-лучевые трубки. Я спрашиваю себя, какие же токи, протекая по отклоняющим катушкам, заставляют пятно пробегать по всем строкам кадра. Я даже занялся небольшими расчетами. В телевизоре моих родителей ширина экрана равна 50 см. Следовательно, каждый раз, проходя по одной строке туда и обратно, пятно совершает путь длиной 1 м. При 625 строках, обегаемых 25 раз в секунду, общий путь, проходимый за 1 с, составит 15625 м. При такой скорости наше пятно обежало бы весь земной экватор минут за сорок.
Любознайкин. — Ты учитывал среднюю скорость пятна. На самом же деле она немного ниже во время прохождения строки, а по завершении ее воспроизведения пятно возвращается к началу следующей строки со скоростью, в десяток раз большей.
Н. — Но тогда скорость достигает 150 км/с; фантастическая стремительность!.. При такой скорости наше пятно могло бы за 40 мин достичь Луны. Но вернемся на Землю. Какую форму должны иметь токи, чтобы, протекая по отклоняющим катушкам, они смогли обеспечивать постоянную скорость луча при просмотре строки, а затем такое быстрое возвращение назад? Или же, если отклонение осуществляется электрическими полями, какой формы должны быть напряжения, прикладываемые на отклоняющие
пластины?Л. — В обоих случаях для прохождения пятна по строке нужно иметь токи или напряжения, возрастающие линейно, т. е. пропорционально времени. Затем они очень быстро должны упасть до своего первоначального значения. Вот на этом рисунке воспроизведение строки происходит за отрезок времени t1, а возвращение пятна занимает время t2 (рис. 186).
Рис. 186. Форма напряжений, прилагаемых на отклоняющие пластины. Время t1движения луча по строке значительно больше времени t2 затрачиваемого на его возвращение.
Н. — Эта форма напряжения похожа на зубья пилы.
Л. — Именно по этой причине говорят о пилообразных токах или напряжениях.
Основная схема развертки
Н. — А как создают, располагая лишь источником постоянного напряжения, токи или напряжения такой причудливой формы?
Л. — Существует множество разнообразных схем. Все они имеют один и тот же основной принцип: постепенный заряд конденсатора через резистор, а затем его быстрый разряд замыканием накоротко (рис. 187).
Рис. 187. Для получения напряжений пилообразной формы конденсатор С заряжают через резистор R, а затем разряжают, замыкая переключатель.
Н. — Действительно, на твоей схеме я вижу, что э.д.с. Е, заставляя ток проходить через резистор R, заряжает конденсатор С. При этом заряд конденсатора происходит, несомненно, замедленно.
Л. — Скорость заряда тем меньше, чем больше сопротивление резистора R и емкость конденсатора С. Чем выше сопротивление, тем большее противодействие прохождению тока оно оказывает, и чем больше емкость конденсатора, тем большее количество электронов нужно ввести в отрицательную обкладку и снять их с положительной. Вот почему при расчетах учитывают произведение RC, которое называют постоянной времени.
Н. — Я предполагаю, что в конце каждой строки замыкают изображенный на твоей схеме переключатель, что позволяет быстро разрядить конденсатор. И этот же процесс, но только с частотой 50 периодов в секунду, несомненно, применяется в схеме развертки полукадров.
Л. — Безусловно. Но ты, конечно, не сомневаешься, что в генераторах пилообразных сигналов используют не механический переключатель. Существует немало различных электронных способов, использующих для этой цели вакуумные или газонаполненные лампы или полупроводниковые приборы. Но прежде чем заняться изучением этих устройств, рассмотрим, какую форму имеют напряжения, которые наша схема развертки позволяет получить на выводах конденсатора.