Чтение онлайн

ЖАНРЫ

Радио и телевидение?.. Это очень просто!
Шрифт:

Экспоненциальные кривые

Н. — А разве ты не сказал мне о необходимости иметь линейную зависимость напряжения?

Л. — В самом деле, это стремятся получить. Однако, к сожалению, заряд конденсатора через резистор не имеет желаемой формы. В начале заряда ток нарастает слишком быстро. Затем, по мере того как конденсатор заряжается и напряжение на его обкладках повышается, разность между э.д.с. Е и упомянутым напряжением сокращается. Это означает, что разность потенциалов между выводами резистора R

убывает. Соответственно снижается и величина протекающего по нему тока.

Н. — Но при таком положении процесс никогда не закончится. Чем больше конденсатор зарядился, тем медленнее происходит дальнейшее накопление заряда.

Л. — Действительно, теоретически это должно продолжаться вечно. Зарядная кривая называется экспоненциальной (рис. 188), а формула, определяющая значение напряжения U в любой момент времени t, имеет вид:

Буквой е обозначают основание натуральных логарифмов. Запомни, что е приблизительно равно 2,718.

Рис. 188. Экспоненциальная кривая показывает нарастание напряжения U на выводах конденсатора, заряжаемого через резистор источником напряжения Е. Используется лишь небольшая часть кривой (t1), которая по своей форме приближается к отрезку прямой.

Н. — Я не очень силен в математике. Однако я заметил, что по истечении времени t = RC, т. е. постоянной времени, напряжение U достигает примерно 2/3Е.

Л. — Браво, Незнайкин! И если ты продолжишь свои вычисления, то увидишь, что каждый раз по истечении отрезка времени, равного постоянной времени, это напряжение возрастает на две трети разности между э.д.с. и ранее достигнутым напряжением.

Н. — Да, это все замедляющийся рост, который никогда не заканчивается, так как напряжение конденсатора никогда не достигнет полной величины Е. А если изменить форму этой кривой, чтобы получить прямую линию?

Л. — Ее можно было бы сделать менее изогнутой, подключив последовательно резистору R катушку индуктивности. Но так не делают. Решение проблемы заключается в том, что используют лишь начальный участок кривой, где она почти прямая.

Действие сигналов синхронизации

Н. — А что управляет возвращением пятна к началу строк или полукадров?

Л. — Сигнал синхронизации, который при передаче выдается в конце каждой строки и каждого полукадра. Этот сигнал вызывает очень быстрое падение сопротивления электронной лампы или полупроводникового прибора, которое шунтирует конденсатор.

Схема устроена так, что это снижение напряжения может происходить

автоматически и повторяться периодически с частотой, чуть меньшей частоты смены строк или полукадров (рис. 189). Это означает, что сигналы синхронизации лишь ускоряют процесс, который все равно бы завершился.

Н. — Не можешь ли ты теперь сказать, как лампа может быстро снизить напряжение.

Рис. 189. Процесс синхронизации схемы развертки. Приходящие на сетку лампы положительные синхронизирующие импульсы вызывают преждевременный разряд конденсатора.

Ионизация тиратрона

Л. — Посмотри на схему, где изображен газонаполненный триод (рис. 190). Лампа эта наполнена нейтральным газом, таким как аргон, неон или гелий. Ее называют тиратроном. Как видишь, ее промежуток катод — анод включен параллельно конденсатору С, который заряжается через резистор R.

Рис. 190. Генератор пилообразных сигналов на тиратроне.

Н. — Однако я вижу два резистора, включенных последовательно с этим промежутком. Переменный резистор R3, возможно, служит для подачи на сетку отрицательного относительно катода смещения, этому ты научил меня во время бесед о ламповых схемах. Но какую роль играет резистор R2?

Л. — Сопротивление этого резистора не превышает несколько сотен ом. Резистор служит для ограничения тока разряда, протекающего через тиратрон, чтобы последний не подвергался разрушению.

Н. — Но я не вижу, что может вызвать разряд.

Л. — Это производит ионизация содержащегося в лампе газа. Когда заряд конденсатора С повышает напряжение на аноде до определенной величины, скорость электронов, притягиваемых анодом с катода, возрастает настолько, что они разбивают молекулы газа. Каждая молекула разделяется на некоторое количество электронов и положительных ионов. Это вызывает мощный ток: электроны идут к аноду, а положительные ионы окружают сетку, притягиваемые ее отрицательным потенциалом.

Н. — Я понимаю, в этот момент сопротивление лампы становится почти равным нулю, что вызывает разряд конденсатора С. Когда в результате этого разряда напряжение анода становится низким, ионизация прекращается, и все начинается сначала.

Л. — Совершенно верно. Но нужно также видеть, какую роль во всем этом играет сетка. Ведь ее потенциал определяет напряжение ионизации промежутка катод — анод. Чем менее отрицательна сетка, тем легче пропускает она электроны с катода к аноду, тем выше их скорость при одном и том же анодном напряжении. Следовательно, ионизация, определяемая скоростью электронов, начинается при менее высоком анодном напряжении.

Поделиться с друзьями: