Чтение онлайн

ЖАНРЫ

Риски цифровизации: виды, характеристика, уголовно-правовая оценка
Шрифт:

3) модификация данных: у атакующего нет доступа к алгоритму обучения, но он имеет полный доступ к данным обучения. Обучающие данные злоумышленник отравляет непосредственно путем изменения перед их использованием для обучения целевой модели;

4) разрушение логики: если у противника есть возможность напрямую вмешиваться в алгоритм обучения. Такая атака также называется логическим искажением.

Исследовательские атаки. Целью таких атак является нарушение конфиденциальности на этапе штатной работы модели. К исследовательским относят несколько типов атак: восстановление модели, восстановление принадлежности, инверсия модели, восстановление параметров. В процессе исследовательской атаки изучается модель ИИ или набор данных, которые в дальнейшем используют злоумышленники. Результат такой атаки – получение знаний о системе ИИ и ее модели, т. е. это атака для извлечения моделей. Атака на данные позволяет «добыть», в частности, сведения о принадлежности экземпляра классу (например, о наличии прав доступа на объект конкретного человека). При помощи инверсии модели извлекают конкретные данные из модели.

В настоящее время исследования посвящены в основном атакам логического вывода на этапе разработки модели, но они возможны и во время обучения. Например, если мы хотим понять, как веб-сайт социальной сети определяет принадлежность к целевой аудитории, в частности к группе беременных женщин, чтобы показать конкретную рекламу, то можем изменить свое поведение, предположим, пытаясь найти информацию о памперсах, и проверить, получаем ли мы объявления, предназначенные для будущих мам.

Восстановление принадлежности экземпляра. Злоумышленник намеревается узнать, был ли конкретный экземпляр в наборе обучающих данных. Речь идет о распознавании изображений. Атакующий хочет проверить, были или нет в обучающем наборе сведения о конкретном человеке. Сам по себе это редко используемый тип разведочных атак. Однако он дает возможность разработать план дальнейших атаки, таких как атака «уклонение» класса «черный ящик». Чем больше вредоносный набор данных похож на набор данных жертвы, тем выше у злоумышленника шанс переобучить атакуемую модель. Вывод атрибута помогает узнать обучающие данные (например, об акценте ораторов в моделях распознавания речи). Успешная атака на восстановление принадлежности показывает, насколько соблюдается конфиденциальность, в частности персональных данных, разработчиками моделей ИИ.

Инверсия модели. На сегодняшний день является наиболее распространенным типом разведочных атак. В отличие от восстановления принадлежности, когда можно всего лишь угадать, был ли пример в наборе обучающих данных, при инверсии модели злоумышленник пытается извлечь из обучающего набора данные в полном объеме. При работе с изображениями извлекается определенное изображение. Например, зная только имя человека, злоумышленник получает его (ее) фотографию. С точки зрения конфиденциальности это большая проблема для любой системы, обрабатывающей персональные данные. Известны также атаки на модели ИИ, которые используются для оказания помощи в лечении в зависимости от генотипа пациента.

Восстановление параметров модели. Цель подобной атаки – определить модель ИИ и ее гиперпараметры для последующих атак типа «уклонение» класса «черный ящик». При этом восстановленные параметры модели используют, чтобы увеличить скорость атак. Одна из первых работ о таких атаках была опубликована в 2013 г. («Взлом умных машин при помощи более умных: как извлечь значимые данные из классификаторов машинного обучения»).

Кроме основных типов атак, выделяют атаки backdoors и trojans. Цели этих атак и типы атакующих различны, но технически они очень похожи на атаки «отравления». Разница заключается в наборе данных, доступных злоумышленнику.

Троянские атаки (trojans). Во время отравления злоумышленники не имеют доступа к модели и начальному набору данных, они могут только добавить новые данные в существующий набор или изменить его. Что касается трояна, то злоумышленники все еще не имеют доступа к начальному набору данных, но у них есть доступ к модели и ее параметрам, и они могут переобучить эту модель, поскольку в настоящее время компании, как правило, не создают свои собственные модели с нуля, а переобучают существующие модели. Например, если необходимо создать модель для обнаружения рака, злоумышленники берут новейшую модель распознавания изображений и переобучают при помощи специализированного набора данных, поскольку отсутствие данных и изображений раковых опухолей не позволяет обучать сложную модель с нуля. Это означает, что большинство компаний-разработчиков загружают популярные модели из интернета. Однако хакеры могут заменить их своими модифицированными версиями с идентичными названиями. Идея трояна заключается в следующем: найти способы изменить поведение модели в некоторых обстоятельствах таким образом, чтобы штатное поведение модели оставалось неизменным. Сначала хакеры объединяют набор данных из модели с новыми входными данными и уже на объединенном наборе переобучают модель. Модификация поведения модели («отравление» и трояны) возможна даже в среде «черного ящика» и «серого ящика», а также в режиме полного «белого ящика» с доступом к модели и набору данных. Тем не менее главная цель – не только ввести дополнительное поведение, но и сделать это таким образом, чтобы заложенная уязвимость (бэкдор) работала после дальнейшей переподготовки системы добросовестными разработчиками.

«Черный ход» (Backdoor). Идея такой атаки взята от одной из самых старых ИТ-концепций – бэкдоров. При разработке моделей ИИ исследователи закладывают в нее и общий, базовый функционал, и возможность дальнейшего переобучения. С целью маскировки атаки по завершению несанкционированного переобучения модель должна сохранить базовый функционал. Это достижимо за счет того, что нейронные сети, например, для распознавания изображений, представляют собой масштабные структуры, образованные миллионами нейронов. Чтобы внести изменения в такой механизм, достаточно модифицировать лишь небольшой их набор. Еще один фактор, делающий возможным атаку «черного хода», заключается в том, что модели распознавания изображений, например Inception или ResNet, крайне сложны. Они обучены на огромном количестве данных, для чего использовались дорогостоящие вычислительные мощности. Провести аудит и выявить черный ход крайне затруднительно.

Атаки подменой модели

машинного обучения. Ресурсами малых и средних компаний создать модели машинного обучения высокого качества практически невозможно. Вот почему многие компании, которые обрабатывают изображения, применяют предварительно обученные нейронные сети крупных компаний. В связи с чем чтобы решить задачу обнаруживать раковые опухоли разработчики могут использовать сеть, доучивая ее, изначально предназначенную для распознавания лиц знаменитостей. Если злоумышленникам удастся взломать сервер, на котором хранятся общедоступные модели (а уровень безопасности общедоступных сервисов невысокий), и загрузить свою собственную модель с интегрированным «черным ходом», модели сохранят свойства, заложенные хакерами даже после переобучения модели добросовестными разработчиками. Например, «черный ход», встроенный в детектор американских дорожных знаков, оставался активным даже после того, как модель была переобучена на идентификацию шведских дорожных знаков вместо американских аналогов. Если владелец не является экспертом, обнаружить эти «черные ходы» практически невозможно. Регулярно появляются методики их обнаружения, но также регулярно возникают новые способы маскировки «черного хода», заложенного в модель.

Классификация атак на методики машинного обучения. Эталонный процесс обучения ИИ предполагает наличие большого набора подготовленных данных, доступ к высокопроизводительным вычислительным ресурсам. Задействованные данные не должны быть личными (приватными), они должны обрабатываться в едином централизованном хранилище. Необходима также фаза стандартного обучения и тонкой настройки гиперпараметров. Однако эти условия в полном объеме тяжело соблюдать на практике. В силу чего для смягчения таких жестких требований были разработаны и приняты в эксплуатацию методики машинного обучения, например трансферное обучение, федеративное обучение, сжатие моделей, многозадачное обучение, метаобучение и обучение на всем жизненном цикле. Они получили широкое распространение даже несмотря на наличие уязвимостей, позволяющих хакерам проводить успешные атаки на разработанные модели.

Многозадачное обучение. Оно повсеместно применяется для решения задач в области классификации изображений, обработки естественного языка и т. п. Даже когда целью обучения модели является выполнение одной задачи, модель обучают в целях выполнения связанных подзадач для улучшения качества и скорости решения главной задачи. Одна из возможных атак – «отравление» набора данных одной задачи и проверка возможности использовать ее выход (результат выполнения) для других задач. Например, жертва хочет обучить модель для определения выражения лица, но из-за нехватки данных решает вспомогательную задачу распознавания лиц при помощи общедоступных наборов данных. Злоумышленник «отравляет» общедоступный набор данных, когда занимается вспомогательной задачей, так чтобы создать «черные ходы» для всей модели. Безусловно, формирование обучающего изображения для создания бэкдора не является тривиальным вопросом и требует знаний и квалификации злоумышленника. Все атаки на однозадачные модели применимы к многозадачным моделям, однако последние могут подвергаться атакам новых типов. Пример – прогнозирование смены направления для рулевого управления в автомобиле без водителя. Разработчик атакуемой модели рассматривает классификацию характеристик дороги как вспомогательную задачу. Поскольку модель обучена для двух связанных задач, выходные данные классификации характеристик дороги имеют прямую связь с выходными данными задачи прогнозирования направления рулевого управления. Запрашивая ответ от зараженной модели характеристик дороги, злоумышленник задает взаимосвязи между этими заданиями. Хотя злоумышленник может не знать, как изменить входные данные, чтобы воздействовать на рулевое управление, но он может изменить вход – подменить определенную характеристику дороги, которая, в свою очередь, повлияет на прогнозирование рулевого управления. Другими словами, злоумышленник использует задачу A в целях создания задачи состязательного целевого ввода для задачи B. Даже если он напрямую не может атаковать B, то посредством вывода А он сделает это опосредованно.

Машинное обучение в течение жизненного цикла. С непрерывным обучением тесно связаны две концепции:

предположение о том, что все исторические знания доступны и используются для изучения новых задач;

накопление полученных новых знаний.

Первая концепция допускает потенциальное заражение данных при атаках типа Backdoor и исследовательских атаках. Согласно второй концепции, процесс может быть нарушен, поскольку атака не позволит системе сохранять получаемые знания и отработанные задачи. Это тип атаки на доступность, она не дает реализовать подход к обучению в течение жизненного цикла.

Выяснение того, как «черные ходы» и атаки «отравлением» данными могут повлиять на системы обучения, имеет первостепенное значение. Например, если решение справляется с задачей накопления знаний, может ли злоумышленник создать бэкдор для одной задачи и использовать ее для всех других новых задач? Если это возможно, то последствия для безопасности будут катастрофическими.

Также злоумышленники могут атаковать процесс накопления полученных знаний. Один из методов атаки заключается в изучении того, может ли добавление нескольких тщательно созданных обучающих образцов с правильными метками изменить структуру модели так, чтобы она плохо выполнялась в прежних задачах. Злоумышленники таким образом инициируют в модели оптимизацию ретроспективных знаний, цель которой состоит в том, чтобы изменить модель под новую, атакующую задачу, тем самым повредить результаты обучения на старых задачах. Механизмы атаки и защиты, характерные для обучения на протяжении всего жизненного цикла, требуют дополнительных исследований.

Поделиться с друзьями: