Чтение онлайн

ЖАНРЫ

Риски цифровизации: виды, характеристика, уголовно-правовая оценка
Шрифт:

§ 2. Большие данные

Понятие. Большие данные (Big Data) – это крайне большой объем структурированных и неструктурированных данных произвольного типа, обрабатываемый в горизонтально масштабируемых информационных системах. Назначение систем Big Data – помогать в принятии решений и инициировать действия на основе анализа цифровой информации. При помощи систем Big Data принимаются решения о необходимости профилактики эпидемий, об изменении полётного графика воздушных судов, о пригодности деталей автомобиля для эксплуатации, о необходимости провести внеплановый ремонт на строительных объектах и многие другие.

История. Определение Big Data появилось в 2008 г. Безусловно, до этого времени

существовали методологии анализа информации, однако стоимость хранения и обработки данных была столь велика, что ограничения в ресурсах либо сводили на нет полезность аналитических отчетов из-за низкой скорости их предоставления, либо качество отчетов было столь низким, что они не имели практического применения.

Вместе с тем, объемы данных росли лавинообразными темпами: пользователи социальных сетей генерировали огромные объемы информации, корпорации копили сведения о клиентах, индустриальные предприятия использовали датчики для контроля технологических процессов, в дополнение к ним в широкой эксплуатации появились домашние приборы и автоматизированных системы, которые без участия человека используют интернет, автоматически отсылают информацию о своем состоянии, получают и обрабатывают команды пользователей и тем самым также порождают огромные объемы данных.

Усиливалась и потребность в анализе этих данных – постоянно шел поиск ответа на бизнес-задачи: предсказание потребительского поведения с целью повысить эффективность маркетинговой активности; цифровое моделирование индустриальных объектов, с целью снизить затраты на дорогостоящие испытания; быстрый анализ данных с погодных датчиков для обеспечения безопасности полетов и др.

К 2008 г. технологический прорыв в области микропроцессорных технологий и в производстве систем хранения данных на порядки снизил стоимость хранения и обработки. Это упростило и удешевило доступ к вычислительным ресурсам до недостижимого прежде уровня, что сделало возможным дальнейший прогресс в развитии аналитических систем.

Важнейшей вехой в истории систем класса Big Data является развитие технологии кластеризации, реализующей горизонтальное масштабирование – объединение разрозненных единиц вычислительной техники в общую вычислительную систему с единым управлением.

Повысилась доступность систем Big Data для широкого круга разработчиков программного обеспечения благодаря изменению бизнес-моделей глобальных технологических компаний: появились трансконтинентальные IT-инфраструктуры, позволяющие использовать практически неограниченные вычислительные мощности и системы хранения без первичных инвестиций – на условиях оплаты аренды ресурса с почасовой тарификацией. Такого рода бизнес-модели сняли финансовые ограничения для малых технологических компаний и дали им возможность активно разрабатывать аналитические инструменты для широкого круга потребителей.

Предпосылками активного развития систем Big Data стали:

– рост объема цифровой информации и потребность коммерческих и государственных организаций в результатах ее анализа;

– технологический прорыв в области микроэлектроники;

– деятельность саморегулирующихся сообществ разработчиков программного обеспечения;

– появление новых бизнес-моделей коммерческих организаций, обеспечивающих широкий доступ к вычислительным ресурсам.

Свойства систем Больших данных. Определяющими свойствами, по которым системы анализа и сбора информации относят к классу Big Data, являются объем обрабатываемых данных, их разнородность, возможность горизонтального масштабирования. Выделяют также ряд потребительских свойств системы, такие как скорость обработки данных, потребительская ценность, достоверность и другие.

Основное свойство систем Big Data – обработка крайне больших массивов данных объем которых постоянно и с большой скоростью увеличивается. Речь идет о данных миллионов финансовых операций, десятках миллионов переходов на веб-сайтах интернет-магазинов, сотен миллионов значений датчиков погоды, снимающих показания по всему миру, миллиардов записей пользователей на персональных страничках социальных сетей, десятков миллиардов действий пользователей поисковых систем и мобильных приложений.

Разнородность

данных – это возможность обработки в системе разнообразных типов данных и их структур. Это свойство характеризует возможность системы проводить анализ неструктурированных данных: «сырых» текстов, медиафайлов – аудиофайлов, видеофайлов и файлов изображений; слабоструктурированной информации: например, новостных каналов, электронных таблиц; структурированных данных реляционных СУБД и данных, полученных в виде структурированного ответа на запрос на специализированных языках работы с данными.

Скорость обработки означает возможность системы принимать и обрабатывать данные в необходимом объеме за ограниченное время. Многие системы Big Data предназначены для сбора информации из большого количества источников в режиме реального времени и их анализа также в режиме реального времени. Пример – медицинские устройства, предназначенные для сбора данных о здоровье и мониторинга состояния пациентов. Предназначение и важность этих систем требует собирать, анализировать эти данные и затем передавать результаты медицинскому персоналу за минимальное количество времени. Необходимость реализации интернета вещей медицинского оборудования создает запрос на обеспечение высокой скорости передачи и обработки данных.

Возможность горизонтального масштабирования – это возможность увеличить производительность и емкость системы путем подключения аппаратных или программных ресурсов таким образом, чтобы они работали как единое логическое целое. Этот механизм также называется кластеризацией вычислительных систем. Если кластеру требуется больше ресурсов для повышения производительности, обеспечения более высокой доступности, администратор может масштабировать вычислительный ресурс, добавляя в кластер больше серверов и/или хранилищ данных.

Поддержка горизонтальной масштабируемости подразумевает возможность увеличивать количество и заменять узлы «на лету», не значительно прерывая функционирование системы. Например, распределенная система хранения данных Cassandra, включает сотни узлов, размещенных в различных дата-центрах. Поскольку оборудование масштабируется горизонтально, Cassandra является отказоустойчивой и не имеет одной критичной точки отказа.

Еще одно преимущество заключается в том, что теоретически производительность горизонтально масштабируемых систем не ограничена. Производительность зависит только от количества узлов, подключённых к системе. Это драматически отличает системы с горизонтальным масштабированием от многих традиционных систем обработки данных в которых при увеличении вычислительного ресурса производительность системы в целом значимо не растет. Это приводит к серьезнейшим функциональным ограничениям традиционных систем.

Таким образом, поддержка горизонтального масштабирование обеспечивает возможность роста объемов данных и их анализа, при котором результат анализа не теряет своей полезности за время расчета. Например, оценка ситуации на дороге для системы автопилотирования должна быть рассчитана за доли секунды – в противном случае, такая оценка просто не нужна.

Примером технологического решения реализации горизонтального масштабирования является Hadoop – проект фонда Apache Software Foundation. Hadoop это библиотека для разработки программного обеспечения предназначенная для создания и выполнения программ, работающих на кластерах из сотен и тысяч узлов. Hadoop – библиотека с открытым т. е. бесплатно распространяемым и дающим возможность менять под свои нужды, программным кодом, практический инструмент разработчиков и архитекторов IT-инфраструктур.

Потребительская ценность системы относится к ключевым потребительским свойствам систем больших данных. Ценность системы – это ее пригодность для получения практически применимых выводов и принятия решений.

Наличие огромных объемов данных необходимо для анализа и, безусловно, существует прямая связь между данными (информации представленной в цифровом виде) и знаниями (достоверными представления о предметах и явлениях действительности), но из наличия взаимосвязи не следует означает, что в Big Data всегда есть знания и они могут быть извлечены. Если на их основании данных нельзя сделать полезных выводов, вся система не будет иметь ценности.

Поделиться с друзьями: