Чтение онлайн

ЖАНРЫ

Сервис, который приносит прибыль
Шрифт:

При наличии финансовых данных и информации об NPS вы сможете составить экономическое обоснование инвестиций в программу Net Promoter на основании модели, позволяющей рассчитать ценность каждого сегмента лояльности и перевода клиентов из сегментов детракторов и нейтралов в категорию промоутеров. Кроме того, вы сможете составить прогноз увеличения доходов с учетом ожидаемого повышения темпов роста.

Определение ценности на основании косвенных данных

При отсутствии необходимых финансовых данных расчет возможного эффекта от перевода клиентов из одной категории лояльности в другую требует другого подхода. В анкеты для клиентов часто включают такой вопрос: какова вероятность

того, что вы продолжите покупать продукты нашей компании? На основании ответов можно оценить в каждом сегменте лояльности склонность к повторным покупкам. Полученные данные можно использовать для прогнозирования финансовых последствий передвижения клиентов по цепочке лояльности.

Рассмотрим в качестве примера XYZ – компанию по выпуску медицинского оборудования с годовым объемом доходов 360 миллионов долларов. Начнем с сопоставления в табличном виде ответов на вопрос о вероятности покупки продуктов и готовности рекомендовать. Чтобы быть консервативными в оценках, мы решили использовать баллы 9 и 10 для высокой вероятности продолжения покупок, а баллы от 0 до 8 – для низкой. Результаты наших исследований представлены в таб. 2.1.

Таблица 2.1. Склонность к повторным покупкам продуктов компании по сегментам лояльности

Наши исследования показали, что около 90 процентов промоутеров с высокой степенью вероятности продолжат покупать продукты компании в дальнейшем, тогда как всего 4 процента детракторов продемонстрировали такую готовность. В целом вероятность продолжения покупок в сегменте промоутеров была в четыре раза выше, чем в категории нейтралов, и в двадцать раз выше, чем у детракторов.

Теперь мы можем использовать эту информацию в модельном расчете влияния продвижения 1 процента клиентов по цепочке лояльности. В табл. 2.2 показана оценка эффекта перевода 1 процента нейтралов в сегмент промоутеров, выполненная с помощью следующих действий:

1. Мы представили в таблице распределение клиентов по сегментам лояльности (столбец 2) для нынешнего и прогнозируемого состояния (с учетом увеличения количества промоутеров на 1 процент и сокращения количества нейтралов на 1 процент).

2. Затем мы умножили эти значения на вероятность продолжения покупок (столбец 3), чтобы получить взвешенное значение вклада клиентов соответствующего сегмента в доходы компании (столбец 4).

3. Далее на основании взвешенных вероятностей мы рассчитали общее взвешенное среднее по каждому сценарию (нынешнему и прогнозируемому). Сами средние показатели ничего не значат, мы будем анализировать только соотношение между ними.

4. И наконец, мы рассчитали относительную разность между двумя средневзвешенными показателями (0,58206 – 0,57526 : 0,57526 = 1,18 процента).

Таблица 2.2. Результат перемещения 1 процента пассивных клиентов в сегмент промоутеров

Разность между взвешенными средними показателями составляет 1,18 процента. Если мы исходим из предположения, что данные о склонности к повторным покупкам отображают предполагаемый вклад существующих клиентов в увеличение доходов компании, то повышение NPS на 1 процент (другими словами, перемещение 1 процента нейтралов в сегмент промоутеров) повлечет за собой рост доходов за счет существующих потребителей на 1,18 процента. Компании, которые могут отделить долю существующих клиентов в своих доходах от доли новых, могут рассчитать фактическое воздействие изменения NPS на увеличение доходов, умножив объем доходов, полученных за счет существующих клиентов, на 1,18 процента.

В этом примере

увеличение NPS посредством перемещения 1 процента детракторов в сегмент нейтралов приводит к росту доходов всего на 0,3 процента. Следовательно, этой компании стратегия превращения нейтралов в промоутеров принесет гораздо более весомый выигрыш, чем перемещение детракторов в сегмент нейтралов. Такой подход позволяет определить, на чем стоит сфокусировать усилия и ресурсы, чтобы они оказали максимальное влияние на финансовый рост.

Оценка влияния рекомендаций

«Половина денег, которые я трачу на рекламу, не приносит пользы. Проблема в том, что я не знаю, какая именно половина», – это знаменитое высказывание приписывают Джону Уонамейкеру [14] , которого считают отцом современной рекламы. Многие маркетологи согласились бы с этим утверждением, учитывая низкий коэффициент отклика и показатели эффективности традиционной рекламы.

В самом начале главы были перечислены четыре положительных аспекта поведения лояльных клиентов. Один из них – готовность порекомендовать вашу компанию другим. Сарафанное радио эффективнее традиционной рекламы, потому что рекомендация исходит из надежного и ценного источника – окружения клиента. Такие сторонники и активные промоутеры – мечта маркетолога.

14

Джон Уонамейкер (1838–1922) – американский коммерсант, религиозный, общественный и политический деятель. Прим. ред.

Все те простые методы оценки лояльности клиентов, которые мы рассматривали до настоящего момента, сфокусированы на непосредственных выгодах от покупки клиентами продуктов компании – другими словами, от готовности каждого конкретного потребителя приобретать что-то повторно, увеличивать расходы на покупку и сотрудничать с вами дольше. В случае распространения доброй молвы мы фокусируем внимание на косвенных преимуществах лояльности клиентов, самое существенное из которых – возможность привлечения новых покупателей с помощью устных рекомендаций. В конце концов, в основе индекса искренней лояльности лежит вероятность того, что клиент порекомендует компанию друзьям или знакомым, а значит, было бы логично предположить, что как минимум часть покупателей выполнят свое обещание, а часть людей, получивших такую рекомендацию, сами станут клиентами компании.

В этом разделе речь идет о двух подходах к расчету финансовой ценности доброй молвы. В основе первого подхода лежит воздействие положительных рекомендаций. Для того чтобы определить его степень, необходимо включить в анкету два простых вопроса.

1. Вы выбрали нашу компанию по рекомендации друзей или знакомых? (Да/Нет.)

2. Рекомендовали ли вы компанию друзьям или знакомым последние 12 месяцев? (Да/Нет.)

В примере с производителем медицинского оборудования мы проанализировали, как применять данные о вероятности повторных покупок для оценки финансовых выгод от превращения нейтралов в промоутеров. Для этого можно использовать и ответы клиентов на вопрос «Рекомендовали ли вы компанию друзьям или знакомым за последние 12 месяцев?».

Например, по имеющимся данным компания получает около 18,2 процента доходов за счет новых клиентов. Для того чтобы определить процент, полученный от новых покупателей, пришедших по рекомендации, мы использовали вопрос «Вы выбрали нашу компанию по рекомендации друзей или знакомых?».

Около 34,6 процента клиентов подтвердили, что им посоветовали компанию, поэтому мы применили этот показатель и по отношению к новым заказчикам. Таким образом, доля доходов за счет рекомендаций составляет 6,3 процента (34,6 процента от 18,2 процента доходов, полученных за счет новых клиентов).

Поделиться с друзьями: