Чтение онлайн

ЖАНРЫ

Шрифт:

Мне следовало бы, пожалуй, сначала описать историю тех изменений в структуре мышления, которые произошли со времен ньютоновской физики. Ньютоновскую физику разумно принять в качестве отправной точки потому, что метод современной естественной науки — эксперимент в соединении с точным описанием явлений и их взаимосвязей — формировался и развивался вместе с ней. В то время интересовались движением тел под действием сил. В результате больших успехов ньютоновского естествознания и вследствие того, что его утверждения часто — хотя и не всегда — обладали наглядной очевидностью, возникло представление, что такой способ образования понятий позволит в конечном счете объяснить все природные явления. Важнейшими понятиями были время, пространство, тело, масса, место, скорость, ускорение, сила. Силой считалось действие одного тела на другое.

Ньютоновскую механику можно было какое-то время существенно расширять, сохраняя эту систему понятий. Гидродинамику, например, можно было вывести из ньютоновской механики, лишь несколько расширив понятие тела. Вода, естественно, не твердое тело. Однако единичные элементы объема жидкости можно было считать телами в смысле ньютоновской физики и таким путем достичь математического и вместе с тем подтверждаемого опытом

описания кинематики и динамики жидкостей. Возникла привычка к такому мышлению, которое постоянно задавалось вопросом о движениях тел или мельчайших частей материи под действием сил.

Только в XIX веке натолкнулись на границы такого типа мышления и постановки вопросов. Трудности — весьма разные по характеру — возникли в двух различных сферах. В учении об электричестве обнаружило свою недостаточность понятие силы, с какой одно тело действует на другое. Фарадей первым указал на то, что мы лучше поймем электрические явления, если будем считать силу функцией пространства и времени, уподобляя ее распределению скоростей или напряжений в жидкости или упругом теле, — другими словами, если перейдем к понятию поля сил. С точки зрения ньютоновской физики такой переход можно было допустить, только приняв, что в пространстве существует однородная субстанция, эфир, поле напряжений или искривлений которого можно было бы отождествить с силовым полем электродинамики. Без такого гипотетического эфира нельзя было интерпретировать электродинамику в мире ньютоновских понятий. Лишь через несколько десятилетий заметили, что в этом гипотетическом эфире, по сути дела, вовсе не было нужды, что он не может обнаружиться ни в каких явлениях и было бы поэтому вернее приписать силовому полю собственную, независимую от каких бы то ни было тел реальность. Однако введение подобной физической реальности окончательно взрывало рамки ньютоновской физики. Приходилось ставить вопросы, отличные от тех, какие умела задавать прежняя физика. Предельно обобщая, можно, пожалуй, сказать, что изменение структуры мышления внешне проявляется в том, что слова приобретают иное значение, чем они имели раньше, и задаются иные, чем прежде, вопросы.

Другой областью, где обнаруживалась недостаточность старого ньютоновского способа образования понятий, было учение о теплоте, хотя трудности здесь были гораздо более тонкими, чем в учении об электричестве, и замечались не так легко. Поначалу все казалось достаточно простым. Можно было дать статистическое описание движения большого числа молекул и тем самым объяснить закономерности феноменологического учения о теплоте. И только когда понадобилось перейти к обоснованию входящей в эту статистику гипотезы неупорядоченности, заметили, что приходится выходить за рамки ньютоновской физики. Первым, кто увидел это со всей отчетливостью, был, наверное, Гиббс. Прошло, однако, несколько десятилетий, прежде чем гиббсовская трактовка учения о теплоте получила хоть какое-то признание, а многим она, вероятно, и поныне кажется странной и непонятной. Во всяком случае, понимание ее требует изменения структуры мышления, потому что здесь появляется отсутствующее в ньютоновской физике понятие условий наблюдения, а также потому, что здесь — часто не осознавая этого — ставят иного рода вопросы.

Но только в XX веке теория относительности и квантовая механика заставили произвести по-настоящему радикальные изменения в основах физического мышления. В теории относительности выяснилось, что понятие времени ньютоновской механики неприменимо, если речь идет о явлениях, где играют роль движения с очень большими скоростями. Поскольку независимость пространства и времени входила в число фундаментальных предпосылок и прежнего мышления, эту структуру мышления приходилось изменить, чтобы признать требуемую теорией относительности связь пространства и времени. Понятие абсолютной одновременности, казавшееся в ньютоновской механике очевидным, нужно было отбросить и заменить другим понятием, учитывающим зависимость от состояния движения наблюдателя. Здесь корень того, почему теория относительности не раз подвергалась критическим нападкам и ожесточенно отвергалась некоторыми физиками и философами. Они чувствовали себя просто не в состоянии пойти на требующееся здесь изменение структуры мышления. Несмотря на это, такая перестройка является условием понимания сегодняшней физики.

Наконец, квантовая механика выдвинула еще более серьезные требования. Пришлось вообще отказаться от объективного — в ньютоновском смысле — описания природы, когда основным характеристикам системы, таким, как место, скорость, энергия, приписываются определенные значения, и предпочесть ему описание ситуаций наблюдения, для которых могут быть определены только вероятности тех или иных результатов. Сами слова, применявшиеся при описании явлений атомарного уровня.

оказывались, таким образом, проблематичными. Можно было говорить о волнах или частицах, помня одновременно, что речь при этом идет вовсе не о дуалистическом, но о вполне едином описании явлений. Смысл старых слов в какой-то мере утратил четкость. Известно, что даже столь выдающиеся физики, как Эйнштейн, фон Лауэ, Шрёдингер, оказались не готовыми к этому или не способными изменить структуру своего мышления.

В общем, оглядываясь назад, можно констатировать, что в текущем столетии произошли две великие революции в нашей науке, сдвинувшие самые основания физики и изменившие в результате все здание этой науки. Зададим теперь вопрос, как произошли столь радикальные изменения или — выражаясь более социологически, но вместе с тем и искажая саму суть дела — как небольшой по видимости группе физиков удалось заставить других физиков изменить структуру науки и мышления. Нечего и говорить, что эти физики поначалу оборонялись, да иначе и не могло быть. Именно здесь я должен предупредить одно напрашивающееся возражение, оправданное тем не менее лишь отчасти. Можно было бы сказать, что сравнение революции в науке с революцией в обществе совершенно ложно, потому что в науке речь в конечном счете идет о правильном или ложном, тогда как в обществе — о желаемом или менее желаемом. Возможно, это возражение в какой-то мере справедливо. Следует тем не менее заметить, что по отношению к обществу место понятий «правильное» и «ложное» могли бы занять понятия «возможное» и «невозможное», ибо при данных внешних условиях возможна вовсе не любая форма общественной жизни. Историческая возможность представляет собой такой же объективный критерий правильности,

как и эксперимент в науке. Как бы там ни было, нам необходимо ответить на вопрос, как же произошли эти революции.

Пожалуй, мне следует начать с истории квантовой теории, поскольку я знаю ее лучше всего. После того как в последней трети прошлого столетия пришли к убеждению, что как в статистическом учении о теплоте, так и в области электромагнитного излучения все стало понятным, естественно было заключить, что теперь, наверное, удастся вывести также и закон излучения так называемого черного тела. Но здесь выявились неожиданные трудности, пробудившие чувство неуверенности. Прямое применение уже доказавших свою надежность законов статистической термодинамики к теории излучения приводило к абсурдному результату, который никоим образом не мог быть верным. Из-за этого, разумеется, ни один физик или группа физиков не стали бы бить тревогу и призывать к ниспровержению физики. Об этом не было и речи. Хорошие физики знали, что здание классической физики построено так прочно и столь надежно укреплено тысячами связанных друг с другом экспериментов, что его насильственное изменение могло привести только к противоречиям. Потому и сделали самое разумное, что только можно сделать в подобных случаях: стали выжидать, не появятся ли в процессе дальнейшего развития новые точки зрения, способные привести к разрешению этих трудностей в рамках классической физики. Среди тех, кто занимался этими проблемами, был тогда один физик явно консервативного умонастроения, который не довольствовался одним только выжиданием. Он верил, что путем более тщательного и основательного анализа проблемы, может быть, удастся прийти к этим новым точкам зрения. Это был Макс Планк. Планк также и в мыслях не стремился опровергнуть классическую физику, он хотел только добиться ясности в этой явно не решенной еще проблеме излучения «черного тела». В итоге он, к своему ужасу, обнаружил, что для объяснения такого излучения вынужден выдвинуть гипотезу, не вмещающуюся в рамки классической физики и с точки зрения старой физики казавшуюся, собственно говоря, совершенно безумной. Позднее он попытался смягчить свою квантовую гипотезу, чтобы противоречие с классической физикой стало не столь шокирующим. Но попытки эти были безуспешны.

И лишь затем был сделан следующий шаг, возвестивший начало настоящей революции. Эйнштейн установил, что особенности квантовой теории Планка, противоречащие классической физике, проявляются и в других феноменах, например в удельной теплоемкости твердых тел или в излучении света. Отсюда квантовая теория распространилась на структуру атома, на химию, на теорию твердых тел — повсюду приходили к убеждению, что квантовая гипотеза описывает, по всей видимости, существенную, прежде упускавшуюся из виду особенность природы. Начали мириться с тем, что внутренние противоречия, неизбежные по меньшей мере на первых порах, делают настоящее понимание физики невозможным.

Дальнейшее вам известно. Лишь позже, к середине 20-х годов, стало ясно, сколь радикальной перестройке должно подвергнуться все здание физики, и в особенности его фундамент. И только к тому времени со всей силой обнаружилось упорное сопротивление уже оформившейся теории. До тех пор квантовую теорию вовсе не обязательно было принимать всерьез. Она была полна внутренних противоречий, что, несомненно, не позволяло считать ее окончательно установленной. Однако со второй половины 20-х годов она обрела законченную и свободную от противоречий форму. Всякий желавший ее понять должен был изменить структуру своего мышления по меньшей мере в сфере физики; он должен был ставить другие вопросы и использовать иные, чем прежде, наглядные образы. Вы знаете, что для многих физиков это оказалось крайне затруднительным. Даже Эйнштейн, фон Лауэ, Планк, Шрёдингер не могли признать окончательность нового послереволюционного состояния. Но я еще раз подчеркиваю, что за всю историю квантовой механики никогда не было такого физика или такой группы физиков, которые стремились бы к ниспровержению физики.

Сравним, однако, развитие квантовой теории с другими, более ранними революциями в истории физики. Спросим, например, как возникла теория относительности. Отправной точкой здесь была электродинамика движущихся тел. Поскольку герцевские волны считались колебаниями гипотетической среды, эфира, поскольку, иными словами, их следовало рассматривать в системе ньютоновских понятий, неизбежно возникал вопрос, что произойдет в эксперименте с телами, движущимися относительно эфира. Было выдвинуто необозримое количество проектов, уже в силу одной только сложности казавшихся ложными. Разумеется, очень заманчиво поразмышлять здесь о том, когда предложенная формула заранее кажется ложной, а когда нет, но я воздержусь от этого. Напомню лучше, что понятие «движение относительного эфира» уже в то время казалось многим физикам подозрительным, потому что ни разу еще не удавалось наблюдать эфир. Физики чувствовали себя заблудившимися в чаще леса и были поэтому рады, когда знаменитые майкельсоновские эксперименты позволили исследовать движение Земли относительно эфира. Результатом, как известно, было то, что и тут никакого эфира не обнаружилось. Как следствие среди физиков распространился общий скептицизм по отношению к понятию эфира и всех связанных с ним расчетов. Однако и после этого не появилось такой группы физиков, которая била бы тревогу и возвещала крушение физики. Напротив, решение старались найти в рамках существовавшей физики, внося в нее наивозможно малые изменения. Поэтому Лоренц предложил ввести для движущихся систем отсчета кажущееся время, связанное с временем, измеренным в покоящейся системе отсчета с помощью знаменитых преобразований Лоренца, и допустить, что это кажущееся время определяет разность хода световых лучей. И только после этого Эйнштейн заметил, что картина бесконечно упрощается, если в преобразовании Лоренца отождествить кажущееся время с действительным. Но тем самым Лоренцовы преобразования приобретали характер высказывания о структуре пространства и времени, и если это высказывание считать правильным, слова «пространство» и «время» означали уже нечто иное, чем в ньютоновской физике. Понятие одновременности было релятивизировано, и структура нашего физического мышления, в основания которого непременно входят понятия «пространство» и «время», изменилась. Эта революция также натолкнулась впоследствии на сильное сопротивление, вызвавшее бесчисленные дискуссии о теории относительности. Но сейчас мне важно лишь подчеркнуть, что и эта революция в физике произошла отнюдь не потому, что некто вознамерился разрушить или радикально перестроить здание классической физики.

Поделиться с друзьями: