Системное программирование в среде Windows
Шрифт:
Потоки и производительность
Программы grepMP и grepMT по своей структуре и сложности сопоставимы друг с другом, однако, как и следовало ожидать, программа grepMT характеризуется более высокой производительностью, так как переключение между потоками осуществляется ядром намного эффективнее, чем переключение между процессами. В приложении В показано, что эти теоретические ожидания отвечают действительности, и это особенно заметно в тех случаях, когда файлы размещены на различных дисках. Оба варианта реализации способны работать в SMP-системах, существенно улучшая показатели производительности в терминах общего времени выполнения (истекшего времени); потоки, независимо от того, принадлежат ли они одному и тому же или разным процессам, параллельно выполняются на различных процессорах. Измеренное пользовательское время в действительности превышает общее время выполнения, поскольку рассчитывается в виде суммарной величины для всех процессоров.
В то же время, существует весьма распространенное заблуждение, суть которого состоит в том, что отмеченный параллелизм, независимо от того, касается ли он использования нескольких процессов, как в случае grepMP, или же применения нескольких потоков, как в случае grepMT, способен приводить к повышению производительности лишь в случае SMP-систем. Выигрыш в производительности можно получить и при использовании нескольких дисков, а также при любом другом распараллеливании в системе хранения. Во всех подобных случаях операции ввода/вывода с участием нескольких файлов будут осуществляться в параллельном режиме.
Модель "хозяин/рабочий" и другие модели многопоточных приложений
Программа grepMT демонстрирует модель многопоточных приложений, носящую название модели "хозяин/рабочий" ("boss/worker"), а рис. 6.3, после замены в нем термина "процесс" на термин "поток", может служить графической иллюстрацией соответствующих отношений. Главный поток (основной поток в данном случае) поручает выполнение отдельных задач рабочим потокам. Каждый рабочий, поток получает файл, в котором она должна выполнить поиск, а полученные рабочим потоком результаты передаются главному потоку во временном файле.
Существуют многочисленные вариации этой модели, одной из которых является модель рабочей группы (work crew model), в которой рабочие потоки объединяют свои усилия для решения одной задачи, причем каждый отдельный поток выполняет свою небольшую часть работы. Модель рабочей группы используется в нашем следующем примере (рис. 7.2). Рабочие группы даже могут самостоятельно распределять работу между собой без получения каких-либо указаний со стороны главного потока. В многопоточных программах может быть применена практически любая из схем управления, разработанных для коллективов в человеческом обществе.