Системное программирование в среде Windows
Шрифт:
Ниже приводится краткая сводка основных положений. Для получения более подробной информации по этому вопросу обратитесь в [38] или к руководству по ОС.
• Поток находится в состоянии выполнения (running state), если она фактически выполняется процессором. В SMP-системах в состоянии выполнения могут находиться одновременно несколько потоков.
• Планировщик переводит поток в состояние ожидания (wait state), если он выполняет функцию ожидания несигнализирующих объектов, например, потоков или процессов, или перехода в сигнальное состояние объектов синхронизации, о чем говорится в главе 8. Операции ввода/вывода также будут
• Поток находится в состоянии готовности (ready state), если она может выполняться. Планировщик в любой момент может перевести такой поток в состояние выполнения. Когда процессор станет доступным, планировщик запустит тот из потоков, находящихся в состоянии готовности, который обладает наивысшим приоритетом, а при наличии нескольких потоков с одинаковым высшим приоритетом запущен будет та, который пребывал в состоянии готовности дольше всех. При этом поток проходит через состояние простоя (standby state), или резервное состояние.
• Обычно, в соответствии с приведенным описанием, планировщик помещает поток, находящийся в состоянии готовности, на любой доступный процессор. Программист может указать маску родства процессоров (processor affinity mask) для потока (см. главу 9), предоставляя потоку процессоры, на которых он может выполняться. Используя этот способ, программист может распределять процессоры между потоками. Соответствующими функциями являются SetProcessorAffinityMask и GetProcessorAffinityMask. Функция SetThreadIdealProcessor позволяет указать предпочтительный процессор, подлежащий использованию планировщиком при первой же возможности.
• После истечения кванта времени, отведенного выполняющемуся потоку, планировщик без ожидания переводит его в состояние готовности. В результате выполнения функции Sleep(0) поток также будет переведен из состояния выполнения в состояние готовности.
• Планировщик переводит ожидающий поток в состояние готовности сразу же, как только соответствующие дескрипторы оказываются в сигнальном состоянии, хотя при этом поток фактически проходит через промежуточное переходное состояние (transition state). В подобных случаях принято говорить о том, что поток пробуждается (wakes).
• Не существует способа, позволяющего программе определить состояние другого потока (разумеется, если поток выполняется, то он находится в состоянии выполнения, и поэтому ему нет никакого смысла определять свое состояние). Даже если бы такой способ и существовал, то состояние потока может измениться еще до того, как опрашивающий поток успеет предпринять какие-либо действия в ответ на полученную информацию.
• Поток, независимо от его состояния, может быть приостановлен (suspended), и приостановленный поток не будет запущен, даже если он находится в состоянии готовности. В случае приостановки выполняющегося потока, независимо от того, по собственной ли инициативе или по инициативе потока, выполняющегося на другом процессоре, он переводится в состояние готовности.
• Поток переходит в состояние завершения (terminated state) тогда, когда его выполнение завершается, и остается в этом состоянии до тех пор, пока остается открытым хотя бы один из ее дескрипторов. Это позволяет другим потокам запрашивать состояние данного потока и его код завершения.
Возможные ловушки и распространенные ошибки
Существует ряд факторов, о
которых следует всегда помнить при разработке многопоточных программ. Пренебрежение некоторыми базовыми принципами может привести к появлению серьезных дефектов в программе, и лучше заранее стремиться к тому, чтобы не допустить ошибок, чем впоследствии затрачивать время на тестирование и отладку программ.Существенно то, что потоки выполняются в асинхронном режиме. По отношению к ним не действует никакая система упорядочения, если только вы не создали ее явно. Именно асинхронное поведение потоков делает их столь полезными, однако при отсутствии должного внимания можно столкнуться с серьезными трудностями.
Часть соответствующих рекомендаций представлена ниже, а остальные будут даваться по мере изложения материала в последующих главах.
• Не делайте никаких предположений относительно очередности выполнения родительских и дочерних потоков. Вполне возможно, что дочерний поток будет выполняться вплоть до своего завершения, прежде чем родительский поток вернется из функции CreateThread, или наоборот, дочерний поток может вообще не выполняться в течение длительного периода времени. В случае же SMP-систем возможно параллельное выполнение родительского и одного или нескольких дочерних потоков.
• Убедитесь в том, что до вызова функции CreateThread были завершены все действия по инициализации данных, необходимые для правильной работы дочернего потока, либо приостановите поток или же воспользуйтесь любой другой подходящей методикой. Несвоевременная инициализация данных, требуемых дочерним потоком, может создать "условия состязаний" ("race conditions"), суть которых заключается в том, что родительский поток "состязается" с дочерним, чтобы инициализировать данные до того, как они начнут использоваться дочерним потоком.
• Проследите за тем, чтобы каждый отдельный поток имел собственную структуру данных, переданную ему через параметр функции потока. Не делайте никаких предположений относительно очередности завершения дочерних потоков (иначе можете столкнуться с другой разновидностью "проблемы состязаний").
• Выполнение любого потока может быть прервано в любой момент, и точно так же выполнение любого потока в любой момент может быть возобновлено.
• Не пользуйтесь приоритетами потоков в качестве замены явной синхронизации.
• Никогда не прибегайте к аргументации наподобие "вряд ли это может произойти" при анализе корректности программы. Если что-то может произойти, оно обязательно произойдет, причем тогда, когда вы меньше всего этого ожидаете.
• В еще большей степени, чем в случае однопоточных программ, справедливо утверждение о том, что, хотя тестирование и необходимо, но его одного еще не достаточно для проверки корректности многопоточной программы. Довольно часто программы способны успешно пройти через самые различные тесты, несмотря на наличие в них дефектов. Ничто не может заменить тщательно выполненных проектирования, реализации и анализа кода.
• Поведение многопоточных программ может заметно меняться в зависимости от быстродействия и количества процессоров, версии ОС и множества других факторов. Тестирование программы в самых различных системах помогает выявлению всевозможных дефектов, но предыдущее предостережение остается в силе.
• Убедитесь в том, что предусмотрели для потоков достаточно большой объем стека, хотя заданного по умолчанию стека размером 1 Мбайт в большинстве случаев вам должно хватить.
• Потоки следует использовать только тогда, когда это действительно необходимо. Таким образом, если по самой своей природе некоторые операции допускают параллелизм, то каждое такое действие может быть представлено потоком. В то же время, если операциям присуща очередность, то потоки лишь усложнят программу, а связанный с ними расход системных ресурсов может привести к снижению производительности.