Собрание сочинений, том 20
Шрифт:
Если же ток становится сильнее, то он совершенно отрывает атомы меди друг от друга, и каждый из них в отдельности соединяется с двумя атомами хлора:
При токах средней силы оба эти вида соединений образуются рядом друг с другом. Таким образом, образование того или другого из этих соединений зависит исключительно лишь от силы тока, и поэтому весь процесс носит по существу электро-химический характер, если это слово имеет вообще какой-нибудь смысл. Несмотря на это, Видеман категорически объявляет его вторичным, т. е. не электро-химическим, а чисто химическим процессом.
Вышеприведенный опыт принадлежит Рено (1867 г.) и относится к целому ряду аналогичных опытов, в которых один и тот же ток проводился в U-образной трубке через раствор поваренной соли (положительный электрод — цинк), а в другой ванне через различные электролиты с различными металлами в качестве положительных электродов. При этом растворенные на один эквивалент цинка количества других металлов показали большие отклонения, и Видеман приводит результаты всего ряда опытов, которые, однако, в большинстве случаев химически вполне понятны и никак не могут быть иными. Так, например, на 1 эквивалент цинка в соляной кислоте растворялось только 2/3эквивалента золота. Это может казаться странным лишь в том случае, если, подобно Видеману, придерживаться старых эквивалентных весов и изображать
349
Здесь и ниже у Энгельса употреблено слово «Gewichtsteil» («весовая часть»), но речь по-прежнему идет об эквивалентах.
Третий пример Видемана привел нас уже опять от электролитической ванны к цепи. И действительно, наибольший интерес представляет цепь, если исследовать электролитические процессы с точки зрения происходящих при этом превращений энергии. Так, мы нередко наталкиваемся на такие цепи, в которых химико-электрические процессы как будто находятся в прямом противоречии с законом сохранения энергии и совершаются как будто вопреки законам химического сродства.
Согласно измерениям Поггендорфа [350] , цепь: цинк, концентрированный раствор поваренной соли, платина — дает ток силой в 134,6 [Пометка на полях: «Если принять, что сила тока 1 элемента Даниеля = 100». Ред.]. Таким образом, мы имеем здесь довольно солидное количество электричества, на 1/3 больше, чем в элементе Даниеля. Где же источник появляющейся здесь в форме электричества энергии? «Первичным» процессом является здесь вытеснение цинком натрия из его соединения с хлором. Но в обычной химии не цинк вытесняет натрий из хлористых и других соединений, а, наоборот, натрий вытесняет цинк. «Первичный» процесс не только не в состоянии дать току вышеуказанного количества энергии, но, наоборот, сам нуждается для своего осуществления в притоке энергии извне. Таким образом, с одним лишь «первичным» процессом мы опять-таки не двигаемся с места. Поэтому рассмотрим, как процесс происходит в действительности. Мы находим, что происходящее здесь превращение выражается не через
350
Здесь и в дальнейшем результаты опытов Поггендорфа Энгельс приводит по книге Видемана, т. I, стр. 368—372.
Zn + 2NaCl = ZnCb + 2Na,
а через
Zn + 2NaCl + 2H2O = ZnCl2 + 2NaOH + H2. Иными словами: натрий не выделяется в свободном виде на отрицательном электроде, а превращается в гидрат окиси, как выше в примере I (стр. [459—460]).
Для вычисления происходящих при этом превращений энергии мы имеем по меньшей мере опорные пункты в определениях Юлиуса Томсена. Согласно им, мы имеем следующее количество освободившейся энергии при соединениях:
(Zn, Cl2) = 97 210 (ZnCl2, aqua) = 15 630 итого для растворенного ZnCl2 : 112840 единиц теплоты
2 (N, O, H, aqua) = 223 620 » »
336 460 » »
Отсюда надо вычесть количество энергии, потраченное при разделениях:
329 740 » »
Избыток освободившейся энергии = 6720 единицам теплоты.
Этого количества, конечно, мало для полученной Поггендорфом силы тока, но его достаточно, чтобы объяснить, с одной стороны, отделение натрия от хлора, а с другой — образование тока вообще.
Здесь перед нами поразительный пример того, что различие между первичными и вторичными процессами вполне относительно и что оно приводит нас к абсурду, если мы станем его рассматривать как нечто абсолютное. Если брать первичный электролитический процесс сам по себе, изолированно, то он не только не может породить тока, но он и сам не может совершаться. Только вторичный, якобы чисто химический процесс впервые делает возможным первичный процесс, доставляя сверх того весь избыток энергии, необходимый для образования тока. Таким образом, он оказывается в действительности первичным процессом, а «первичный» оказывается вторичным. Когда Гегель, выступая против метафизиков и против метафизически мыслящих естествоиспытателей, диалектически превращал выдуманные ими неподвижные различия и противоположности в нечто обратное тому, что они утверждали, то его обвиняли в том, что он извращает их слова. Но когда природа поступает с этими различиями и противоположностями так же, как старик Гегель, то не пора ли несколько ближе исследовать это дело?
С большим правом можно считать вторичными те процессы, которые, хотя и происходят вследствие химико-электрического процесса в цепи или электро-химического процесса в электролитической ванне, но совершаются независимо и отдельно от него, т. е. те процессы, которые имеют место на некотором расстоянии от электродов. Поэтому совершающиеся при подобных вторичных процессах превращения энергии и не вступают в электрический процесс; они ни отнимают у последнего, ни доставляют ему прямым образом энергию. Подобные процессы встречаются в электролитической ванне очень часто; выше под № I мы имели пример этого в образовании серной кислоты при электролизе сернокислого натрия. Но в электролитической ванне они представляют меньше интереса. Зато гораздо более важно с практической стороны появление их в цепи, ибо хотя прямым образом они и не доставляют энергию химико-электрическому процессу и не отнимают ее у него, но всё же они изменяют общую сумму имеющейся в цепи энергии, воздействуя благодаря этому на химико-электрический процесс косвенным образом.
Сюда относятся, кроме позднейших химических превращений обычного типа, явления, обнаруживающиеся тогда, когда ионы выделяются на электродах в состоянии, отличном от того состояния, в котором они обычно обнаруживаются в свободном виде, и когда они затем переходят в это последнее состояние лишь после того, как покинули электроды. Ионы могут при этом обнаружить другую плотность или же принять другое агрегатное состояние. Но они могут претерпеть значительные изменения также и со стороны своего молекулярного строения, и это является наиболее интересным случаем. Во всех этих случаях вторичному, происходящему на известном расстоянии от электродов, химическому или физическому изменению ионов соответствует аналогичное изменение теплоты; по большей части теплота освобождается, в отдельных случаях она потребляется. Это изменение теплоты, само собой разумеется, ограничивается прежде всего тем местом, где оно происходит: жидкость в цепи или в электролитической ванне согревается либо охлаждается, остальные же части замкнутой цепи остаются незатронутыми этим изменением. Поэтому эта теплота называется местной теплотой. Таким образом, освобождающаяся химическая энергия, служащая для превращения в электричество, уменьшается или увеличивается на эквивалент этой порожденной в цепи положительной или отрицательной местной теплоты. В цепи с перекисью водорода и соляной кислотой 2/3 всей освобождающейся энергии потреблялось, по Фавру, в форме местной теплоты; наоборот, элемент Грова значительно охлаждался после замыкания и, следовательно, доставлял цепи путем поглощения теплоты еще энергию извне. Мы видим, таким образом, что и эти вторичные процессы оказывают обратное
воздействие на первичный процесс. С какой бы стороны мы ни подошли к рассматриваемому вопросу, различие между первичными и вторичными процессами остается чисто относительным и, как правило, снова снимается в их взаимодействии между собой. Если это забывают, если рассматривают подобные относительные противоположности как нечто абсолютное, то в конце концов неизбежно запутываются, как мы видели выше, в безнадежных противоречиях.При электролитическом выделении газов металлические электроды покрываются, как известно, тонким слоем газа; вследствие этого сила тока убывает, пока электроды не насытятся газом, вслед за чем ослабленный ток становится снова постоянным. Фавр и Зильберман доказали, что в подобной электролитической ванне тоже возникает местная теплота, которая может происходить лишь оттого, что газы освобождаются на электродах не в том состоянии, в котором они обычно существуют, и что после своего отделения от электродов они переходят в это свое обычное состояние лишь благодаря дальнейшему процессу, связанному с выделением теплоты. По в каком состоянии выделяются газы на электродах? Трудно выразиться по этому поводу с большей осторожностью, чем это делает Видеман. Он называет это состояние «известным», «аллотропным», «активным», наконец, в случае кислорода, иногда также «озонированным». В случае же водорода он выражается еще более таинственным образом. Местами проглядывает воззрение, что озон и перекись водорода суть те формы, в которых реализуется это «активное» состояние. При этом озон настолько преследует нашего автора, что он объясняет даже крайне электроотрицательные свойства некоторых перекисей тем, что они, «может быть, содержат часть кислорода в озонированном состоянии))! (кн. I, стр. 57). Действительно, при так называемом разложении воды образуется как озон, так и перекись водорода, но лишь в незначительных количествах. Нет никаких оснований предполагать, что местная теплота обусловливается в рассматриваемом случае тем, что более или менее значительные количества обоих вышеуказанных соединений сперва возникают, а затем разлагаются. Мы не знаем теплоты образования озона (О3) из свободных атомов кислорода. Теплота образования перекиси водорода из H2O (в жидком состоянии) + О по Бертло [351] = 21480; следовательно, образование этого соединения в более или менее значительных количествах должно было бы обусловить большой добавочный приток энергии (примерно тридцать процентов энергии, необходимой для разделения H2 и О), который бросался бы в глаза и который можно было бы обнаружить. Наконец, озон и перекись водорода объяснили бы лишь явления, относящиеся к кислороду (если мы отвлечемся от перемен направления тока, при которых оба газа встретились бы на одном и том же электроде), не объясняя случая с водородом. А между тем и последний выделяется в «активном» состоянии, притом так, что в сочетании: раствор азотнокислого калия между платиновыми электродами, водород соединяется с выделяющимся из кислоты азотом прямо в аммиак.
351
Этот результат термохимических измерений Бертло Энгельс приводит по книге А. Наумана «Руководство по общей и физической химии», Гейдельберг, 1877, стр. 652.
В действительности все эти трудности и неполадки не существуют. Выделение веществ «в активном состоянии» не является монополией электролитического процесса. При каждом химическом разложении происходит то же самое. Оно выделяет освободившийся химический элемент сперва в форме свободных атомов О, Н, N и т. д., которые лишь затем, после своего освобождения, могут соединяться в молекулы O2, H2, N2 и т. д., выделяя при этом соединении определенное, однако до сих пор еще не установленное, количество энергии, проявляющейся в форме теплоты. Но в тот ничтожный промежуток времени, когда атомы свободны, они являются носителями всей той энергии, которую они вообще могут взять на себя; обладая максимумом доступной им энергии, они свободно могут вступить во всякое подходящее для них соединение. Следовательно, они находятся «в активном состоянии» по сравнению с молекулами О2, Н2, N2, которые уже отдали часть этой энергии и не могут вступить в соединения с другими элементами, если не получат обратно извне этого отданного ими количества энергии. Поэтому нам нет нужды искать спасения только в озоне и в перекиси водорода, которые сами являются лишь продуктами этого активного состояния. Например, что касается только что упомянутого образования аммиака при электролизе азотнокислого калия то мы можем осуществить это образование аммиака также и без цепи, просто химическим путем, прибавляя азотную кислоту или раствор какой-нибудь азотнокислой соли к какой-нибудь такой жидкости, в которой водород освобождается посредством химических процессов. Активное состояние водорода тождественно в обоих случаях. Но в электролитическом процессе интересно то, что здесь мимолетное существование свободных атомов становится, так сказать, осязаемым. Процесс делится здесь на две фазы: электролиз выделяет на электродах свободные атомы, а их соединение в молекулы происходит на некотором расстоянии от электродов. Как ни ничтожно мало это расстояние с точки зрения отношений между массами, его достаточно, чтобы по крайней мере в значительной части воспрепятствовать израсходованию освобождающейся при образовании молекул энергии на электрический процесс и чтобы тем самым обусловить превращение этой энергии в теплоту, а именно в местную теплоту в цепи. Но этим доказывается, что элементы выделились в виде свободных атомов и существовали некоторое время в качестве свободных атомов в цепи. Факт этот, который мы в чистой химии можем установить только путем теоретических умозаключений, доказывается нам здесь экспериментально, насколько это возможно без чувственного восприятия самих атомов и молекул. И в этом заключается огромное научное значение так называемой местной теплоты в цепи.
Превращение химической энергии в электричество посредством гальванической цепи есть процесс, о ходе которого мы почти ничего не знаем и сможем узнать что-нибудь более определенное, пожалуй, лишь тогда, когда лучше познакомимся с modus operandi [способом действия. Ред.] самого электрического движения.
Цепи приписывается некоторая «электрическая разъединительная сила», вполне определенная для каждой определенной цепи. Как мы видели в самом начале, Видеман вынужден признать, что эта электрическая разъединительная сила не является определенной формой энергии. Наоборот, она прежде всего не что иное, как способность, как свойство той или иной цепи превращать в единицу времени определенное количество освобождающейся химической энергии в электричество. Сама эта химическая энергия никогда во всем ходе процесса не принимает форму «электрической разъединительной силы», а, напротив, тотчас же и непосредственно принимает форму так называемой «электродвижущей силы», т. е. электрического движения.
Если в обыденной жизни говорят о силе какой-нибудь паровой машины в том смысле, что она способна превратить в единицу времени определенное количество теплоты в движение масс, то это вовсе не основание для того, чтобы переносить эту путаницу понятий и в науку. С таким же успехом можно было бы говорить о различной силе пистолета, карабина, гладкоствольного ружья и винтовки, стреляющей удлиненными пулями, потому что они при одинаковом заряде пороха и одинаковом весе пули стреляют на различное расстояние. Но здесь нелепость подобного способа выражения бросается в глаза. Всякий знает, что причиной, приводящей пулю в движение, является воспламенение пороха и что различная дальнобойность ружья обусловливается исключительно только большей или меньшей растратой энергии, в зависимости от длины ствола, от зазора пули [352] и от ее формы. Но то же самое относится к силе пара и к электрической разъединительной силе. Две паровые машины при прочих равных условиях, т. е. при предположении, что в обеих в одинаковые промежутки времени освобождаются одинаковые количества энергии, или две гальванические цепи, удовлетворяющие тем же самым условиям, отличаются друг от друга в отношении производимой ими работы лишь тем, что в них имеет место большая или меньшая растрата энергии. И если техника огнестрельного оружия обходилась до сих пор во всех армиях без допущения особой огнестрельной силы оружия, то для науки об электричестве совершенно непростительно допускать какую-то аналогичную этой огнестрельной силе «электрическую разъединительную силу», силу, в которой нет абсолютно никакой энергии и которая, следовательно, из самой себя не может произвести работы даже на одну миллионную долю миллиграммомиллиметра.
352
Имеется в виду разность между внутренним диаметром ружейного ствола и диаметром пули.