Солнечная система (Астрономия и астрофизика)
Шрифт:
Во втором приборе использовали тот же принцип, но в отношении газовой среды: гипотетические обитатели грунта подкармливались радиоактивными питательными веществами; в результате метаболизма (обмена веществ с окружающей средой) они должны были выделить меченый углекислый газ. Результаты этого эксперимента можно было считать положительными, хотя и очень непохожими на то, что ожидалось.
Еще меньше были похожи на земные результаты третьего эксперимента, где грунт помещали в камеру с точно известной атмосферой и вводили в него питательную смесь. В результате жизнедеятельности микроорганизмов в камере должен был измениться состав газа. Нормальное проведение эксперимента на Земле занимало две недели. Но на Марсе из грунта сразу же выделялись углекислый газ и кислород, а все реакции завершились за двое суток. Результаты
Наиболее тяжелый удар по надеждам встретить микрофлору на Марсе нанес газовый хроматограф, соединенный с масс-спектрометром. В нем образец грунта нагревался, а выходящие из него газовые продукты разложения анализировались. Был исследован ряд образцов марсианского грунта, взятых с глубины от 4 до 6 см. Зарегистрировано выделение сравнительно больших количеств кислорода, водяного пара и углекислого газа. Но никаких органических соединений не отмечено, хотя чувствительность прибора к примесям достигала одной десятимиллиардной доли. Тот же прибор в образце антарктического грунта массой всего 0,1 г. обнаружил более двадцати органических соединений.
Любая известная форма жизни при разложении выделяет органические летучие вещества. Поэтому можно сделать вывод, что либо количество микроорганизмов в местах посадки «Викингов» было ничтожно мало, либо их вообще нет на планете, хотя объяснить это трудно. Многие земные микроорганизмы смогли бы приспособиться к обитанию в верхнем слое марсианского грунта. В любом случае, «Викинги» были хорошим экспериментом с достаточно строгими результатами.
Микроокаменелости в метеорите ALH 84001
В августе 1996 г. все информационные агентства мира сообщили о так долго ожидавшемся открытии, — о следах внеземной жизни в метеоритном теле, найденном в Антарктиде. Обычно метеориты мало выделяются на фоне почвы, поэтому их редко находят. Удобными для их поиска оказались снежно-ледовые пустыни Антарктиды. Разумеется, при падении горячие метеориты уходят глубоко в лед и снег, поэтому на находку свежих образцов надеяться не приходится. Но при выветривании старых льдов вмороженные когда-то метеориты выходят на поверхность. Так в Антарктиде удается найти до 400 образцов за год, и так были найдены метеориты ЕЕТА 79001 в 1979 г. и ALH 84001 в 1984 г., отнесенные к группе SNC.
Метеоритный материал этой группы встречается очень редко. На 1997 г. было известно 12 метеоритов SNC. Это аббревиатура от названий населенных пунктов, вблизи которых нашли эти метеориты: Шерготти, Накла и Шассиньи (Shergotty, Nakhla, Chassigny). Четыре метеорита SNC удалось обнаружить сразу после выпадения, поэтому они не были загрязнены земными материалами. Метеорит Накла (Египет, близ Александрии), который выпал в 1911 г., долгое время был известен главным образом тем, что при падении убил собаку. Эта жертва — единственный известный случай в истории. Но наибольшую известность SNC-метеориты (их часто называют «шерготитами») получили по другой причине: они пришли с Марса. Еще несколько лет назад в это просто не верили. Но подробные исследования показали, как это происходит.
Чтобы покинуть поле тяготения Марса, осколки от метеоритного удара должны разлететься со скоростями не менее 5 км/с. Теория указывает, что для этого давление взрыва в момент удара должно достигать 1,5 Мбар, но при таких давлениях материал разрушается и плавится. По признакам, которые содержит материал самих метеоритов, выяснилось, что фактически они испытали лишь 1/4 давления, предсказанного теорией. Дело в том, что высокие давления в
момент взрыва имеются только на достаточно большой глубине. Разрушенный и выброшенный материал подхватывает обломки на поверхности, которые таким образом приобретают необходимую скорость, но сами не разрушаются. Так шерготиты оказались в космосе. Дальнейший путь марсианских камней был очень запутанным и продолжался много миллионов лет. Часть таких метеоритов возвращается в конце концов на Марс, часть захватывается полем Юпитера и частично попадает в его атмосферу, часть выбрасывается из Солнечной системы. Наконец, небольшая часть достигает Земли и, возможно, Венеры и становится своего рода «обменным фондом» между планетами.Несомненно, что такие же выбросы возможны и с Земли. Метровые обломки породы, выброшенной из большого (24 км.) метеоритного кратера Риис (Ries) в южной Германии, найдены в Швейцарии. Для этого их начальная скорость должна была составлять 1,4 км/с. А еще более мощные удары могли выбрасывать обломки и за пределы земного тяготения.
Шерготиты обладают интересными особенностями. Обломок, который выпал в Индии в 1965 г., содержит следы его образования в глубоком резервуаре магмы на другой планете. Другой представляет собой кусок слоистого материала, содержащего карбонаты, что может дать некоторые данные о прошлом климате Марса. Этот образец был недавно найден в Антарктиде. (Возникает вопрос, надо ли посылать на Марс экспедицию за образцами грунта). Наконец, если на Марсе когда-либо была жизнь, возможно, следы ее сохранились в этих метеоритах.
Сейчас столкновения крупных тел очень редки, и на Землю попадает мало марсианского материала, по оценкам, всего 1/2 тонны за год. Но на ранних этапах истории Солнечной системы планетных обломков должно было быть очень много.
Быстрое развитие технологии позволило создать научные приборы, которые способны провести анализ состава вещества на основе всего нескольких десятков тысяч его атомов. С использованием таких приборов в 1980 г. удалось выполнить изотопный анализ газа, содержавшегося в микроскопических количествах в метеорите ЕЕТА 79001. Результаты оказались сенсационными: состав газа и соотношение изотопов в нем такие же, как в атмосфере Марса по данным «Викингов». Изотопный состав — это своеобразный паспорт; химический состав может значительно изменяться, но изотопный очень стабилен. Так удалось доказать, что ЕЕТА 79001 и другие шерготиты действительно возникли на Марсе.
Метеорит ALH 84001 очень не похож на остальные. Довольно крупный, весом 1,9 кг, он пролежал после находки 10 лет, не привлекая внимания исследователей. Но в 1993—94 гг. удалось доказать, что изотопный состав содержащегося в нем кислорода также соответствует марсианскому, а метеорит обладает скрытыми признаками шерготитов.
В августе 1996 г. группа ученых объявила о возможном присутствии в этом метеорите древних окаменелостей биологического, но не земного происхождения. (Как правило, все метеориты загрязнены земной флорой. Вопреки распространенному мнению, Антарктида вовсе не стерильное место, микроорганизмов там сколько угодно).
Методы современной физики и химии позволяют определить возраст таких обломков и длительность их пребывания в открытом космосе. Возраст 11 образцов SNC не очень большой, от 180 до 1300 млн. лет. Но ALH 84001 оказался самым старым. По первым определениям, он возник из жидкой магмы 4,5 млрд. лет назад, когда Марс еще даже не до конца сформировался. Затем (3,9 млрд. лет назад) он подвергся сильному удару, который оставил в нем многочисленные трещины. За 16 млн. лет до нас еще более мощный удар выбросил его с поверхности Марса в космос, где он путешествовал до встречи с Землей. 13 тыс. лет назад он выпал на льды Антарктиды в районе Алан Хиле, где его и нашли.
«Мы уверены, что где бы ни образовался этот метеорит, что-то в нем жило, — писала газета Нью-Йорк Таймс. — Состав углеводородов указывает на биологическую активность». Эта цитата относится, однако, вовсе не к образцу ALH 84001. История повторяется. В 1961 г. сенсационные статьи посвящались метеориту Оргей, выпавшему во Франции в 1864 г. Его исследовал еще Луи Пастер. В 1961 г. группа специалистов в США объявила о том, что органические включения в метеорите имеют биологическое происхождение. Споры в научной прессе длились 14 лет, но закончились признанием, что включения «имеют земное происхождение».