Чтение онлайн

ЖАНРЫ

Солнечная система (Астрономия и астрофизика)
Шрифт:

Есть свидетельства тому, что на ранних стадиях эволюции Юпитер излучал в космос огромные потоки энергии. Галилеевы спутники Юпитера, расположенные несравненно ближе к своей планете, чем к Солнцу, получали на единицу площади больше энергии, чем Меркурий от Солнца. Следы этих событий сохранились на поверхности Ганимеда. Расчеты показывают, что пиковая светимость Юпитера могла доходить до 1/10 светимости Солнца. В лучах Юпитера плавились льды на поверхности всех спутников, частично включая Ганимед. Реликтовое тепло планеты сохраняется с той далекой эпохи. А в настоящее время важным источником тепла может быть медленное погружение к центру планеты более плотного, чем водород, гелия.

Облачный покров и прилегающие слои атмосферы

Результаты измерений яркостной температуры Юпитера зависят от длины волны: в некоторых спектральных интервалах атмосфера более прозрачна; в этих «окнах»

удается наблюдать излучение относительно глубоких и теплых слоев тропосферы. В других диапазонах поглощение очень велико и тепловое излучение приходит от более высоких и холодных слоев стратосферы. В среднем на том уровне, где расположена видимая поверхность облаков, температура составляет 150 К, а давление немного ниже, чем у поверхности Земли, — 0,5 бар. На уровне 0,1 бар, где расположена тропопауза, температура падает до 100—120 К, это минимальная температура на Юпитере. Выше температура снова растет и на высоте около 90 км. над облаками достигает 140—160 К. Еще выше, до уровня давления 10—6 мбар, температура остается почти постоянной, около 180 К. Благодаря поглощению коротковолнового излучения Солнца средняя температура протонов и электронов на высотах 600—3000 км. составляет 850—1000 К. Здесь находится обширная ионосфера планеты, которая простирается в высоту на 3 тыс. км. Наибольшая концентрация электронов, примерно 105 в 1 см3, приходится на высоту 1000 км.

В отличие от облаков Земли, состоящих только из воды, облака Юпитера содержат различные соединения по меньшей мере шести элементов — водорода, углерода, азота, кислорода, серы и фосфора. Их состав определяется давлением, температурой, освещенностью и движениями атмосферы. Давно известно, что в атмосфере Юпитера присутствуют аммиак (NH3) и метан (CH4), молекулы которых содержат много водорода. Но аммиак, метан, водяной пар, гидросульфид аммония (NH3H2S) — все это малые составляющие доступной изучению части атмосферы Юпитера. Отметим, что присущие Юпитеру сильные полосы паров аммиака едва заметны у Сатурна, а Уран и Нептун не имеют их вовсе, так как весь аммиак замораживается глубоко под их облачными слоями. Зато полосы метана у этих планет становятся весьма широкими и занимают значительную часть спектра в красно-голубой его части, что и придает этим планетам сине-зеленую окраску.

На уровне облаков Юпитера содержание водяного пара составляет 1,5x10—3, метана 8,3x10—3, гидросульфида аммония в газовой фазе 2,8x10—5, аммиака 1,7x10—4. При этом содержание аммиака переменно и зависит от высоты. Именно он образует видимый облачный покров; температура его конденсации зависит от давления и составляет 130—200 К, что в среднем совпадает с тем, что наблюдается на уровне облаков. При температуре 165 К давление аммиака над кристалликами аммиачного льда составляет 1,9 мбар, и возрастает вдвое при 170 К. Для конденсации метана при тех же давлениях нужна значительно более низкая температура, 79 К. Поэтому метан в атмосфере Юпитера в твердую фазу, по-видимому, не конденсируется.

В облаках наряду с кристаллами должны присутствовать капли жидкого аммиака. Цвет облаков с такой смесью белый с легким желтоватым оттенком, характерным для зон. Однако для объяснения красно-коричневых оттенков поясов необходим какой-то другой окрашивающий агент. По-видимому, некоторые цветные оттенки поясам придает фосфин (РН3) — газообразное соединение фосфора с водородом, содержание которого около 6x10—7. При температурах от 290 до 600 К оно распадается с выделением красного фосфора. И наоборот, при низкой температуре фосфор снова соединяется с водородом. Окраска облаков может быть связана также с водородными и аммонийными полисульфидами и серой. В списке газов, присутствующих в атмосфере Юпитера, значатся также этан, ацетилен, незначительное количество синильной кислоты (HCN), окись углерода и углекислый газ. Присутствие последнего в атмосфере Юпитера объяснить трудно, так как двуокись углерода разрушается в водородной атмосфере.

Следует помнить, что видимая поверхность облаков представляет тонкий слой, всего несколько десятков километров. Под облаками из кристаллического аммония находятся другие слои: из сернистокислого аммония, водного раствора аммиака, из кристалликов водного льда, наконец — из капель воды.

Первый зонд в атмосфере Юпитера

7 декабря 1995 г. сброшенный с «Галилео» зонд впервые в истории вошел в атмосферу Юпитера. Его начальная скорость 60 км/с за 3 мин. упала до 500 м/с. Действующая

на аппарат перегрузка достигала 228g. Кинетическая энергия рассеивалась на лобовом коническом щите, температура покрытия которого поднялась до 14000°С! Затем щит отделился, и дальнейший спуск проходил на парашюте, в районе 6,5°с.ш., 4,5°з.д.

Пока аппарат был в работоспособном состоянии, он углубился в атмосферу на 146 км. ниже уровня условной поверхности Юпитера (верхняя кромка плотных облачных слоев, где давление равно 1 бар, а температура —107°С). Все это время — около 60 минут — зонд передавал результаты научных измерений на орбитальный отсек. Предполагалось, что при этом он пройдет все облачные слои, о которых говорилось выше. Радиосигналы с аппарата перестали поступать, когда давление достигло 22 бар, а температура 153°С. По-видимому, водородно-гелиевая атмосфера каким-то образом проникла в аппарат, иначе измерения продолжались бы и дальше. Из-за технических проблем не всю программу удалось выполнить. Непосредственные измерения показали, что физика атмосферы Юпитера еще сложнее, чем предполагалось.

Район входа находится на границе экваториальной зоны и северного экваториального пояса, где на некоторых участках наблюдается повышенная яркость в инфракрасном (5 мкм.) диапазоне. Характер полученных данных не полностью соответствует изложенным выше представлениям, что, в принципе, можно отнести за счет локальных особенностей района. По постепенному ослаблению солнечного света зонд обнаружил над верхним ярусом облаков диффузный слой, состоящий из ледяных частиц аммиака. Фактически зарегистрирован только один слой облаков, состоящий, по-видимому, из ледяных частиц гидросульфида, причем метеорологическая «дальность видности» в нем превышает 1,5 км. Из распределения яркости неба был сделан вывод, что вдали были видны какие-то облака. Но никакого слоя водяного пара или снега, вопреки ожиданиям, не обнаружено. Более того, атмосфера Юпитера оказалась очень сухой.

Массовое соотношение водорода к гелию в атмосфере (75:24) оказалось большим, чем по результатам «Вояджеров». На долю остальных элементов приходится всего 1%, причем углерода и серы в 2—3 раза больше, чем на Солнце. Количество органических молекул ничтожно мало. Теоретические модели с содержанием гелия 24% указывают, что температура ядра у Юпитера очень высокая, около 20000 К.

Зональные (восток-запад) скорости ветра на всем протяжении спуска были очень велики и достигали 640 км/ч, или 180 м/с. Измерения с «Вояджеров» тоже указывали на высокие скорости ветра, но трудно было предположить, что такие же скорости сохраняются глубоко под облачным слоем. Если на Земле динамика атмосферы и океана определяется притоком энергии от Солнца, то на Юпитере роль Солнца в метео-явлениях невелика. Ветры, превосходящие в несколько раз самые ураганные ветры Земли, порождаются мощными источниками тепла в горячих глубинах планеты, причем это относится почти ко всем планетам-гигантам.

Мы говорили уже о «сверхмолниях» на Юпитере. На зонде, сброшенном с «Галилео», был установлен прибор для регистрации молний как оптическим, так и радиометодом. Вспышки зарегистрированы не были, но радиоизлучение удаленных молний принималось постоянно. Молнии примерно в 10 раз превосходят по мощности земные, но на единицу площади их меньше тоже в 10 раз. Таким образом, грозовые явления теперь известны на Венере, Земле и Юпитере. Возможно, они существуют и на других планетах-гигантах.

По составу водородо-гелиевый Юпитер очень напоминает звезды. Его даже называют иногда «несостоявшейся звездой». Однако масса Юпитера в 13 раз меньше минимальной массы самых легких звезд — коричневых карликов, способных перерабатывать в своих недрах «легкогорящие» в термоядерных реакциях элементы — дейтерий и литий. Масса Юпитера в 70 раз меньше того минимума (предел Кумара), который необходим для протекания водородо-гелиевых термоядерных реакций, служащих источником энергии Солнца. В процессе термоядерного синтеза водорода в Солнце становится все меньше, а гелия — все больше. Атмосфера же Юпитера, напротив, должна иметь реликтовый, исходный состав протосолнечной туманности. Поэтому соотношение между водородом и гелием должно было сохраниться в ней таким же, каким оно было у молодого Солнца. На основании измерений Юпитера мы можем теперь считать (с известной осторожностью), что Солнце с самого начала содержало довольно много гелия.

Внутреннее строение и магнитное поле

Протяженность атмосферы Юпитера по разным оценкам составляет от 1 до 6 тыс. км. При первом из этих значений — 1000 км. — давление на «дне» водородо-гелиевой атмосферы будет достигать 150 тыс. бар. Там должна начинаться зона плавного перехода газообразной, жидкой и твердой фаз в «поверхность» Юпитера, по некоторым расчетам раскаленную до 2000 К.

Толстый слой «жидкого водорода» действительно ведет себя как жидкость, хотя правильнее называть это состояние газожидким. Из-за высокой температуры водород Юпитера и других гигантов находится в сверхкритическом состоянии: водород не может быть жидкостью при температуре более 33 К. Здесь необходимо сделать оговорку.

Поделиться с друзьями: