Чтение онлайн

ЖАНРЫ

Шрифт:

Известен, например, имитатор для измерения параметров солнечных элементов, состоящий из двух ламп — ксеноновой и вольфрамовой. У ксеноновой лампы длинноволновая часть спектра (правее 0,7 мкм) «отрезана» с помощью фильтра на основе раствора медного купороса, охлаждаемого водой, а коротковолновое излучение вольфрамовой лампы накаливания (левее 0,55—0,6 мкм) поглощается фильтром из цветного стекла. Смешение на облучаемой поверхности солнечного элемента двух коррегированных таким образом лучистых потоков дает возможность при изменении мощности ламп и толщины фильтров получать сглаженную кривую как внеатмосферного, так и наземного солнечного излучения.

Жидкостной оптический фильтр на основе раствора медного купороса может быть также применен для приближения к спектру Солнца спектрального излучения обычных ламп накаливания.

Можно сделать

сравнительно простой наземный имитатор на лампах накаливания со стеклянными фильтрами и диффузным отражателем, обеспечивающим равномерное освещение рассеянным светом, близким к наблюдающемуся в натурных условиях. Как показали эксперименты, такой отражатель позволяет получить неравномерность, не превышающую ±5 % на площади 40x40 мм. Линзовая оптика в имитаторе отсутствует. Источник излучения — галогенные лампы с цветовой температурой 3400 К. Хорошее приближение к сглаженной кривой спектрального распределения полного потока наземного излучения при атмосферной массе 1,5 можно получить с помощью специальных цветных стекол.

Рис. 3.1. Оптическая схема имитатора прямого и рассеянного (диффузного) потока наземного солнечного излучения

1 — вольфрамовые галогенные лампы; 2 — конденсоры; 3 — плоские фацетные отражатели; 4 — объективы; 5,6 — светофильтры для имитации спектрального состава прямого и рассеянного (диффузного) потока излучения соответственно; 7 — измеряемый солнечный элемент

Более полно реальные условия наземного солнечного излучения воспроизводятся при использовании оптической схемы, показанной на рис. 3.1. Правый луч одной лампы и левый луч другой проходят через светофильтр и, освещая солнечные элементы под углом, близким к нормальному, имитируют поток прямого солнечного излучения. Другая пара лучей, проходя системы коррекции и попадая на солнечные элементы под острым углом, имитирует рассеянное излучение неба. Как показали расчеты, спектральное распределение излучения лампы накаливания с цветовой температурой 3400 К можно преобразовать в спектральное распределение прямого солнечного потока при стандартных параметрах с помощью светофильтра, состоящего из нескольких специально подобранных цветных стекол различной толщины и слоя дистиллированной воды. Оптимизация толщины фильтров проводилась разработчиком этой схемы И. С. Оршанским (Всесоюзный научно-исследовательский институт источников тока) на ЭВМ, что позволило достичь хорошей коррекции спектра ламп.

Эталонные солнечные элементы и их градуировка

Учитывая, что спектральное распределение энергии излучения даже высококачественных имитаторов отличается от стандартного солнечного, а чувствительность солнечных элементов селективна, проводить настройку интенсивности имитаторов с помощью неселективных приемников излучения (радиометров) нецелесообразно. Для этой цели применяются специально отградуированные эталонные солнечные элементы. Эталонные, или стандартные, солнечные элементы, иногда также называемые светоизмерительными приемниками, — это фактически радиометры с селективной чувствительностью.

Плотность потока солнечного излучения при одинаковом значении воздушной массы и, казалось бы, сравнительно небольших вариациях основных составляющих атмосферы может изменяться, как показали расчеты, достаточно сильно. Из сравнения различных атмосферных условий следует, что плотность потоков солнечного излучения при нескольких измерениях, фиксируемая неселективным радиометром, может быть почти одинаковой, в то время как спектральный состав излучения будет отличаться столь существенно, что солнечные элементы (в силу селективной чувствительности) будут вырабатывать при этом различную электрическую мощность и значительно отличающиеся токи. Даже у высококачественных элементов различие в токах короткого замыкания, измеренных в наземных условиях при одинаковой энергетической облученности, но разном состоянии атмосферы, составляет в эксперименте около 15 %. В то же время, например, одинаковая плотность солнечного излучения 672 Вт/м2 (зафиксированная в разные дни измерений в одном и том же

пункте земной поверхности) может наблюдаться для следующих двух состояний атмосферы: при m=3, толщине слоя озона 5,5 мм, ?=0,02, ?= 1,3 и при m=1,5, толщине слоя озона 2 мм, ?=0,17, ?=0,66 (толщина слоя осажденных паров воды в обоих случаях 2,0 см), хотя очевидно, что спектральный состав излучения при столь разных параметрах атмосферы будет заметно отличаться.

Сравнение градуировочного коэффициента — отношения интегрального фототока с единицы площади элемента, определенного по спектральной чувствительности, к плотности потока солнечного излучения, падающего на эту площадь, — для большого числа солнечных элементов показало, что если настройка интенсивности излучения имитаторов из вольфрамовых ламп без фильтра проводится неселективным радиометром, то погрешность измерения тока короткого замыкания солнечных элементов достигает 50 %.

При использовании имитаторов на основе вольфрамовых ламп с дихроическим фильтром погрешность составит 30 % (при прогнозировании значений тока во внеатмосферных условиях) и 10 % (в наземных), а для имитаторов на основе ксеноновых ламп с короткой дугой и интерференционными фильтрами погрешность равна 15 % для наземных измерений и 3–5 % для космических.

При градуировке эталонных солнечных элементов определяют ток короткого замыкания в стандартных условиях облучения. C помощью эталонного солнечного элемента настраивают имитатор — регулируют поток его излучения до тех пор, пока ток короткого замыкания эталона станет таким же, как при стандартных условиях.

Следует отметить, что в этом случае энергетическая облученность рабочей зоны имитатора не будет в точности совпадать с энергетической облученностью, создаваемой естественным солнечным излучением в стандартных условиях, поскольку излучение оценивается по его воздействию на селективно-чувствительный солнечный элемент конкретной конструкции из определенного полупроводникового материала.

Обычно для оценки излучения по его воздействию на приемник с конкретной спектральной чувствительностью вводят эффективные величины: оценка излучения по его воздействию на глаз человека производится в люксах, по воздействию на кожу — в эритемных единицах и т. д. В случае солнечных элементов вводится не эффективная величина, требующая нового названия; а эквивалентная. Так, если источник с произвольным спектром при некоторой энергетической облученности создает в солнечном элементе ток, равный внеатмосферному, то при этом энергетическая облученность для данного типа излучения эквивалентна 1360 Вт/м2.

Например, при освещении лампой накаливания с цветовой температурой 2850 К кремниевый солнечный элемент с мелкозалегающим p-n– переходом (I<=0,5mkm) генерирует такой же ток, как в космических условиях, если энергетическая облученность, создаваемая лампой, снабженной водяным фильтром толщиной 40 мм, равна приблизительно 780 Вт/м2, а лампой без фильтра — 960 Вт/м2. В обоих случаях освещаемый такой лампой кремниевый эталонный элемент покажет 1360 Вт/м2.

Применение эталонных солнечных элементов позволяет проводить удовлетворительные по точности измерения на имитаторах с плохой коррекцией спектра и даже при использовании источников излучения с произвольным спектральным распределением энергии. Погрешность оценки электрических характеристик солнечных элементов в этом случае будет зависеть от степени отличия спектральной чувствительности измеряемого и эталонного элементов. Таким образом, основное требование, предъявляемое к эталонным солнечным элементам, — идентичность их оптических свойств и спектральных характеристик характеристикам тех солнечных элементов, для измерения которых они применяются. Особенно это касается спектральной чувствительности. При использовании эталонных элементов в наземных условиях с имитаторами, имеющими широкий пучок излучения, важна также и угловая зависимость чувствительности, в значительной степени определяемая микрорельефом поверхности солнечного элемента, влияющим на коэффициент отражения света при различных углах падения. Даже самый совершенный технологический процесс изготовления не обеспечивает идентичности оптических и спектральных характеристик всех элементов данного типа, поэтому в качестве эталонных желательно отбирать элементы, имеющие характеристики, близкие к средним для выпускаемой продукции.

Поделиться с друзьями: