Современный компьютер. Сборка и модернизация
Шрифт:
Так, предыдущая попытка заставить программистов «мыслить в два потока» связана с широко разрекламированной в свое время технологией виртуальной многопоточности Hyper-Threading. Поскольку и в одноядерном процессоре есть простаивающие или незагруженные в каждый момент времени модули, разработчики рассчитывали загрузить их, представив один физический процессор как два логических. Для этого достаточно было сделать так, чтобы операционная система определяла его как два равноправных процессора. Теоретически, если бы в программах активно использовался многопоточный принцип, очередь команд через такие «два входа» начала бы продвигаться гораздо быстрее, занимая по мере возможности свободные блоки и полнее нагружая процессор работой. Но массовой оптимизации так и не произошло, несмотря на рыночное давление. Поэтому в реальности выигрыш от включения HT достигается только при условии, что вы запускаете сразу несколько программ, причем непременно – ресурсоемких, например игру с трехмерной графикой и обработку цифрового видео. В таком случае на процессоре без HT работа просто застопорится, тогда как с HT вы сможете
Однако общий темп будет заметно снижен, не говоря уж о том, что такая работа вообще имеет мало общего с действительностью. Играть гораздо приятнее на свободном компьютере, а ресурсоемкие операции (антивирусные проверки, обработку цифрового видео и аудио) лучше оставить на то время, когда вы можете отвлечься на обеденный перерыв или будете свободны. В этом случае подобные процедуры займут гораздо меньше времени. Также следует учитывать, что не существует таких задач, которые загружали бы только процессор. В работу вовлекаются и другие компоненты, а активное обращение к оперативной памяти и дискам во время игры гарантированно затормозит реакцию компьютера до неприемлемого уровня. Что касается «офисной» многозадачности, когда необходимо проводить сканирование или распечатку текстов одновременно с получением почты веб-серфингом, то нужно помнить, что во всех этих случаях несопоставимо медлительным звеном будет сама периферия, а центральному процессору придется отвлекаться для ее обслуживания лишь на очень и очень короткие периоды времени. И на практике для совершенно прозрачного, с точки зрения пользователя, обслуживания подобных приложений достаточно любого современного процессора, хотя бы и самого дешевого.
К настоящему моменту инициативу Hyper-Threading можно назвать в целом неудавшейся, так, в двухъядерных процессорах Pentium D виртуальная многопоточность (то есть 4 логических процессора) будет создана лишь в ограниченном количестве моделей. И по имеющимся тестам, она практически не влияет на уровень их производительности.
Тем не менее эти выводы никак не касаются «истинной многоядерности» – есть целые категории профессиональных задач, для которых переход на двухъядерные процессоры оправдан уже сейчас. Распределение одной задачи между несколькими процессорами нельзя назвать очень уж новой идеей, но до сих пор этот способ применялся лишь для соответствующих классов задач, которые хорошо поддавались распараллеливанию. Стоимость материнской платы, на которую можно установить два процессора, равно как и стоимость пары процессоров, способных работать в паре, всегда ограничивала распространение подобных систем. Потому и список соответствующих программ получается небольшой. Значительное ускорение на «двухядерниках» наблюдается в пакетах 3ds max 6, Maya 6.5, Lightwave 8.2, небольшой эффект заметен в программах Adobe Photoshop и Distiller и уж совсем минимальный – в программах упаковки данных. В играх эффект отсутствует полностью, поскольку отображением трехмерной картинки в компьютере занимается видеокарта, а процессору остаются плохо распараллеливаемые процессы. Однако есть надежда, что переход к двум физическим ядрам все же заставит программистов начать более активную оптимизацию приложений и через несколько лет ситуация изменится.
Но в отличие от увеличенной разрядности, многоядерность отнюдь не бесплатна. Никто не предлагает двухъядерный процессор по цене одноядерного. Себестоимость их пока ровно вдвое выше, а цена также превосходит соответствующие по частоте модели с одним ядром более чем в полтора раза. Поэтому всегда нужно выбирать – либо переплатить за двухъядерный процессор, либо серьезно пожертвовать тактовой частотой. Первый вариант всем хорош (кроме цены, конечно), а от второго хотелось бы предостеречь, так как на данный момент список оптимизированных программ слишком мал, чтобы выигрыш от использования двух ядер был бы постоянно ощутим.
Поэтому в отношении нынешних двухъядерных процессоров рекомендации будут совершенно однозначными. Их стоит приобретать, только если вы профессионально работаете в перечисленных выше приложениях и в то же время собираетесь потратить на процессор внушительную сумму, чтобы тактовая частота оказалась на уровне старших процессоров из одноядерной линейки. В противном случае одноядерник будет более предпочтительным вариантом не только по производительности в современных программах, но и по срокам морального устаревания.
Даже если оптимизация массовых программ для двухъядерных процессоров состоится, то к моменту появления массовых программ производительность нынешних младших двухъядерных процессоров уже не будет соответствовать их требованиям. В таком случае логично будет выбрать либо новую одноядерную модель, развитие которой не прекращается, либо один из действительно мощных двухъядерных процессоров, которые к тому времени будут иметь гораздо более логичную, соответствующую реальной привлекательности цену.
Холодно – горячо
Осталось рассмотреть еще одну не связанную с производительностью, но напрямую влияющую на потребительские свойства характеристику процессора – тепловыделение. Чем сильнее греется процессор, тем интенсивнее требуется его охлаждать, а для потребителя это почти всегда означает, что и шуметь такая система будет сильнее. А для устранения подобной проблемы, возможно, придется истратить в несколько раз больше денег на альтернативную систему охлаждения, например водяную. В большинстве своем такие системы требуют определенных навыков для установки, а их протечка грозит выходом из строя нежной электроники. Тепловыделение напрямую зависит от потребляемой мощности, поскольку процессор переводит ее в тепло. Потребление мощности, в свою очередь, зависит от используемых
в производстве технологий, тактовой частоты процессора и поддержки механизмов энергосбережения.Самыми экономичными являются, конечно же, мобильные процессоры. Если говорить конкретнее – меньше всего тепла при работе выделяют процессоры Pentium M. Что характерно, более слабый Celeron M потребляет энергии гораздо больше и сажает батарейки ноутбука в несколько раз быстрее, поскольку он на правах дешевого процессора был лишен разработчиками развитых технологий энергосбережения. Этот процессор фактически является переведенной на современные технологические нормы реализацией архитектуры Pentium III. Если учесть небольшое количество транзисторов и добавленные механизмы энергосбережения, результат получается вполне предсказуемый. А успех Pentium M в качестве процессора для ноутбуков является вполне заслуженным. Лишь чуть больше энергии в среднем потребляет мобильный процессор Turion 64, спроектированный на основе Athlon 64, что также вполне понятно, поскольку он свежее по архитектуре, чем Pentium M. Гораздо любопытнее тот факт, что и настольный Athlon 64, несмотря на свою 64-битность и более высокие тактовые частоты, потребляет в режиме спокойной работы лишь немногим больше мобильных процессоров. Причем даже у двухъядерных Athlon 64 X2 (рис. 2.1) потребление мощности возросло незначительно. Такой результат объясняется не в последнюю очередь работой оригинальной технологии Cool & Quiet, регулирующей частоту и напряжение процессора динамически, в зависимости от реальных потребностей запущенной в данный момент программы. Благодаря такому подходу мобильная версия процессора Athlon 64 фактически ничем не отличается от «настольных» Athlon 64. А процессор Turion 64 отличается от Athlon 64 лишь тем, что дополнительно тестируется на способность работать при меньшем напряжении и компактной системе охлаждения, но при этом он все равно располагает всей функциональностью «взрослых» 64-битных процессоров. В среднем ноутбук на Turion 64 работает от одного комплекта батарей равной емкости чуть меньше, чем при использовании Pentium M, что вполне компенсируется функциональностью и большей перспективностью.
Рис. 2.1. Процессор Athlon 64 X2.
Процессоры Pentium 4 (рис. 2.2) отличаются наибольшим тепловыделением среди продаваемых в настоящее время процессоров для ПК. Это происходит из-за архитектурных особенностей семейства Netburst. Поэтому недавно было принято решение свернуть выпуск мобильных версий этого процессора (Pentium 4-M), так как они не выдерживали конкуренцию с Pentium M и Turion 64. Ну а рекордсменами по прожорливости и теплоотдаче закономерно являются двухъядерные Pentium D. При работе они могут потреблять и рассеивать до 150 Вт, что примерно в два раза больше тепловыделения самых «жарких» из моделей Athlon 64 в таких же условиях. Надо учесть, что значения выше 130 Вт фактически являются пределом для воздушных систем охлаждения, поэтому даже незначительное нарушение теплоотвода радиатора (запылившийся радиатор вполне может стать причиной этого) может привести к перегреву и аварийному снижению частоты такого процессора по команде от системы защиты.
Рис. 2.2. Процессор Pentium 4.
Процессоры с высоким тепловыделением не рекомендуется приобретать для домашних компьютеров, поскольку шум от системы охлаждения может создавать серьезный дискомфорт. И даже угрожать семейному благополучию, особенно если вы собираетесь играть или работать вечерами, когда остальные домочадцы отдыхают. А вот для работы в офисе шум является второстепенным параметром из-за высокого уровня фонового шума.
Кулер
Если вы покупаете процессор в коробочной (in BOX) комплектации, радиатор с вентилятором, которые гарантированно могут охладить процессор до безопасной температуры, вы получите в комплекте. Но все же рекомендуется заменить нанесенную на подошву кулера термопасту. Для этого стоит использовать пасту АлСил-3. Она широко продается в компьютерных магазинах. А если вы заказываете сборку компьютера, рекомендуется жестко оговорить использование этой термопасты. Она потребуется не только для лучшего теплового контакта, но и для простого снятия кулера с процессора, если это потребуется в будущем, например для частичного обновления компьютера и замены процессора на более мощную модель. К сожалению, стандартная паста отличается повышенной вязкостью, и процессор при отсоединении радиатора может вырваться из гнезда, что совсем не полезно для его состояния.
Впрочем, если вы хотите получить гарантированный комфорт в работе, возможно, имеет смысл приобрести процессор в поставке без кулера (OEM) и выбрать достойный охладитель самостоятельно. Так, для дешевых моделей Sempron и Celeron одними из лучших являются кулеры производства компании Glacialtech. Они очень дешевы (обычно в комплекте с процессором такой кулер обойдется дешевле, чем коробочная версия) и практически бесшумны.
Чтобы добиться бесшумной работы компьютера с мощным процессором, работающим постоянно под нагрузкой, придется потратить на кулер достаточно много: даже больше той суммы, чем составляет разница между коробочной и OEM-поставкой процессора. В этом случае на ваше внимание будут претендовать модели от Titan, Zalman, Arctic, Scythe, Cooler Master и многих других производителей. В качестве примера можно привести очень хорошо зарекомендовавшие себя в наших тестах TITAN TTC-NK15TB/SC/RB Vanessa S-Type, Zalman 7000-ALCU (рис. 2.3) и бескомпромиссный по теплоемкости выбор – Zalman 7700-CU. Любопытно, что в сочетании с экономичными моделями процессоров (это касается старших моделей Sempron под Socket 754 и всех Athlon 64, то есть тех процессоров, которые поддерживают технологию Cool & Quiet) такие кулеры позволяют добиться не просто тихой, а вовсе бесшумной работы. Вентилятор может оставаться в покое большую часть рабочего времени!