Чтение онлайн

ЖАНРЫ

Шрифт:

Такой обескураживающий вывод следует из работ Больцмана: различие прошлого и будущего – это следствие нашего расфокусированного взгляда на мир. Вывод ужасающий: может ли быть, чтобы мое такое живое, экзистенциальное, все определяющее ощущение бытия – и течения времени – объяснялось тем, что я не могу рассмотреть мир во всех его мельчайших деталях? Это просто какая-то ошибка из-за моей близорукости? Неужели, если бы я ясно видел танец миллиардов молекул, будущее оказалось бы “таким же”, как и прошлое? Я был бы в равной мере осведомлен – или не осведомлен – о прошлом, как и о будущем? Я согласен, что наше интуитивное восприятие мира часто бывает ошибочно. Но может ли мир быть настолько фундаментально отличен от наших интуитивных представлений?

Все это подрывает основания нашего привычного понимания времени. Провоцирует полное недоверие, как в случае движения Земли. Но, как и в случае движения Земли, доводы неумолимы: все явления, характеризующие течение времени, сводятся к “особому” состоянию мира в прошлом, “особость” которого заключается в расфокусированности нашего зрения.

Ниже я вернусь к попыткам разобраться

в тайне этой размытости и обращусь к вопросу, как она может быть связана со странной начальной невероятностью нашей Вселенной. Здесь же я остановлюсь на удивительном факте, что энтропия – Больцман понял и это – не что иное, как число микроскопических состояний, которые наш расфокусированный взгляд на мир не в состоянии различить.

Формула, содержащая именно это утверждение [29] , выбита на мраморной плите на могиле Больцмана в Вене, прямо над мраморным бюстом ученого, изображающим его суровым и мрачным – таким, каким он, я уверен, никогда не был. Не только молодые студенты-физики приходят сюда навестить могилу и постоять перед ней в задумчивости. Иногда сюда приходят и пожилые профессора.

Время потеряло еще один из своих ключевых элементов: внутреннее различие прошлого и будущего. Больцман понял, что в сути вещей нет ничего, что определяло бы поток времени. Есть только какое-то смутное отражение таинственной невероятности Вселенной в некий момент в прошлом.

29

S = klnW, где S – это энтропия; W – число микросостояний или соответствующий объем фазового пространства; k – это всего лишь константа, сегодня она носит имя Больцмана и приводит в соответствие (произвольные) размерности справа и слева от знака равенства.

Только оно дает источник “вечному потоку” в элегиях Рильке.

Ставший полным профессором уже в 25 лет, принятый при императорском дворе в момент своего наивысшего успеха, безжалостно раскритикованный большей частью академического мира, в котором не понимали его идей, вечно балансирующий между воодушевлением и подавленностью, “милый добрый толстяк” Людвиг Больцман закончит свою жизнь, повесившись.

В Дуино, недалеко от Триеста. Пока его жена и дочь будут купаться в Адриатическом море.

Это то самое Дуино, где примерно через год напишет свои элегии Рильке.

Глава 3

В конце настоящего

Разбилисьпод этим нежным ветром веснысладчайшейоковы холода, замкнутые зимою,возвращаются в море лодки…Пора наступила плести нам венкидля чела украшенья(I 4)
Скорость тоже замедляет время

За десять лет до того, как он понял, что время замедляется массой [30] , Эйнштейн понял, что время замедляется скоростью [31] . Следствие этого открытия оказалось наиболее разрушительным для наших интуитивных представлений о времени.

Факт сам по себе прост: вместо того чтобы отправлять одного из двух друзей в горы, а другого в долину, попросим одного стоять на месте, а другого ходить туда-сюда. У того, который ходит, время будет идти медленнее.

30

Об общей теории относительности см.: Einstein A. Die Grundlage der allgemeinen Relativit"atstheorie (см. выше).

31

О специальной теории относительности см.: Einstein A. Zur Elektrodynamik bewegter K"orper // Annalen der Physik. 17, 1905, pp. 891–921. (См. рус. пер.: К электродинамике движущихся сред // Сочинения (см. выше). Т. 1. С. 7–36. – Прим. перев.)

Как и прежде, длительности, проживаемые друзьями, различны: тот, что ходит, стареет медленнее, его часы показывают меньшее время, у него меньше времени на раздумья, цветок, который он носит с собой, позже распустится и так далее. Для всего того, что движется, время проходит медленнее.

Чтобы этот небольшой эффект сделать заметным, надо двигаться быстро. Впервые его смогли измерить в 1970-е годы с помощью часов, установленных на реактивном самолете [32] . Часы во время полета отставали от таких же часов на земле. Сегодня замедление времени в зависимости от скорости непосредственно наблюдается во многих физических экспериментах.

32

См.: Hafele J. C., Keating R. E. Around-the-World Atomic Clocks: Observed Relativistic Time Gains // Science. 177, 1972, pp. 168–70.

И опять Эйнштейн сделал вывод о том,

что время должно замедляться, до того, как само это явление стало возможно наблюдать. Ему тогда было 25 лет, и он изучал электромагнетизм. Но в его выводе все же не было ничего очень сложного: электричество и магнетизм хорошо описываются уравнениями Максвелла. В эти уравнения входит обычная переменная времени t, но есть одна любопытная особенность: если ты двигаешься с определенной скоростью, для тебя уравнения Максвелла перестают быть справедливыми (то есть они описывают не то, что ты можешь измерить), если только ты не назовешь временем какую-то другую переменную t [33] . Об этой странности уравнений Максвелла математики знали [34] , но никто не понимал, что она может значить. Эйнштейн это понял: t – время, которое проходит для меня, стоящего неподвижно, ритм, в котором разворачиваются события в неподвижности около меня; а t – “твое время”, ритм, в котором разворачиваются события, движущиеся вместе с тобой. t – это время, которое измеряют мои неподвижные часы, t – время, которое измеряют твои часы, находящиеся в движении. Никто не мог помыслить, что время может оказаться разным для неподвижных часов и для часов, находящихся в движении. Эйнштейн прочитал это между строк в уравнениях Максвелла – он принял их всерьез [35] .

33

Эта переменная зависит от t, а также от положения и скорости наблюдателя.

34

Речь о Пуанкаре. Лоренц пытался дать физическое объяснение новой величине t', но оно получилось чрезмерно запутанным.

35

Эйнштейн часто подчеркивал, что эксперименты Майкельсона и Морли не имели большого значения для него при создании специальной теории относительности. Я думаю, что это действительно так, и в этом отражается одно важное для философии науки обстоятельство. Не всегда для того, чтобы сделать какие-то шаги к лучшему пониманию мира, необходимы новые экспериментальные данные. У Коперника было не больше наблюдательных данных, чем у Птолемея, но он смог прочитать гелиоцентризм в данных Птолемея, так же и Эйнштейн поступил с данными Максвелла.

Для движущегося предмета проходит меньше времени, чем для неподвижного: часы отсчитывают меньше секунд, растение меньше увеличивается в размерах, малыш видит меньше снов. Для движущегося предмета [36] время сокращается. Не только нет общего времени для разных мест, но нет единого времени даже в одном и том же месте. Определенную продолжительность можно связать только с определенным движением чего-либо, с определенной траекторией. “Собственное время” зависит не только от места, не только от того, велика ли расположенная поблизости масса, но и от скорости, с которой мы движемся.

36

Движущегося относительно чего? Как определить, какой из двух предметов движется, если движение всегда лишь относительно? Этот вопрос многих сбивает с толку. Правильный ответ (даваемый редко) таков: речь о движении в той единственной системе отсчета, в которой пространственные координаты точки, где часы разлучаются, и точки, где они встречаются вновь, совпадают. Есть только одна прямая линия, проходящая через две мировые точки пространства-времени, соответствующие событиям А и В: именно измеренное вдоль нее время будет максимальным, и именно скорость по отношению к ней будет замедлять время в некотором смысле. Это означает следующее: если двое часов разлучатся и больше никогда не встретятся, нет смысла спрашивать, какие из них спешат, а какие отстают. Если же они встретятся, их показания можно сравнить, и скорость каких-то одних станет вполне определенной величиной.

Факт и сам по себе странный. Но следствие из него вообще экстраординарно. Держитесь крепче, сейчас начнется!

“Сейчас” ничего не значит

Что сейчас происходит где-то там, далеко от нас? Представим, например, что моя сестра отправилась на Проксиму b, недавно открытую экзопланету, которая обращается вокруг ближайшей к нам звезды на расстоянии четырех световых лет. Вопрос: что сейчас делает моя сестра на Проксиме b?

Правильный ответ: этот вопрос не имеет смысла. Это как спросить, находясь в Венеции: “А что находится в этом же самом месте в Пекине?” Смысла задавать такой вопрос нет, потому что про “это самое место” мы можем говорить, только подразумевая Венецию, а никак не Пекин.

Обычно, если меня интересует, чем одновременно со мной занимается моя сестра, я поступаю просто – смотрю на нее. А если она где-то далеко, то звоню и спрашиваю. Но – внимание! – если я смотрю на сестру, отраженные от нее световые лучи должны достичь моих глаз. Свету для этого нужно некоторое время – допустим, несколько наносекунд (миллиардных долей секунды), и поэтому я вижу не то, что она делает сейчас, а то, что делала несколько наносекунд назад. Если она в Нью-Йорке и я звоню ей по телефону, ее голос будет бежать по проводам несколько миллисекунд, прежде чем достигнет моего уха, и тогда я смогу узнать, что делала моя сестра несколько миллисекунд назад. Разница, в общем-то, пустячная.

Поделиться с друзьями: