Сто килограммов для прогресса
Шрифт:
Начертил я четырехцилиндровый четырехтактный двигатель внутреннего сгорания и остановился. Сколько там всяких мелочей — как начал вспоминать, так стал записывать, а то забуду. Столько раз участвовал в переборке двигателя, но многие мелочи конструкции так до конца и не понял. А карбюратор! В мое время они уже почти не встречались, а без него никак, впрыск топлива мне точно не сделать. Карбюратор — механика, гидро- и аэродинамика. Но очень непростая вещь, там несколько режимов в зависимости от положения дроссельной заслонки и потока воздуха. Начал разбираться — руки опускаются. Визуально конструкцию помню — но что для чего — не все понимаю. Опять велосипед изобретать.
Не то я начертил. Такое сложное литье блока
Может еще проще — Болиндер, нефтяной двигатель? Он заметно проще и всеядный, но со своими проблемами: узкий диапазон рабочих оборотов, надо прогревать перед пуском. Чтобы нормально работал, ему тоже нужен топливный насос с форсункой, хотя и не такой мощный как дизелю. КПД низкий, хотя и выше чем у паровика. А это для меня важно — нефти мало. Но тут считать надо — Болиндер использует всю жидкую нефть с меньшим КПД, а бензиновый — только бензин с большей эффективностью. Но нефти все равно мало, даже на приличный катер не хватит. Да и пока это только размышления, делать это некому, все строят «щит и меч» — корветы.
* * *
Второй корвет спустили на воду. Надо еще палубные надстройки варить, но они в эллинг по высоте не помещаются. Будем доделывать у причала, хотя там теперь работать хуже чем в эллинге, ветер холодный, дело к зиме идет. А летом было комфортнее на причале работать.
Название корвету сочинял недолго. Зевсу, греческого пантеона богов, соответствует Юпитер в римском пантеоне. Два брата, можно сказать. Должны быть очень похожи, когда «Юпитер» достроим. Небольшие усовершенствования есть, но они незаметны. Самое большое отличие — у «Юпитера» борт толще, но из обычной стали. Но это тоже незаметно.
* * *
Кручу в руках нашу первую вакуумную радиолампу, ту, которая почти заработала. Внутри лампы осталось небольшое количество воздуха, очень небольшое. Но даже эти молекулы мешают двигаться электронам. Надо было туда геттер вставить, чтобы он поглотил остаток газов. Теперь уже поздно — проще сделать новую лампу. Хотя…
А есть такой «фокус» — осаждение металлического натрия на внутренней стороне колбы герметичной лампы. У нас стекло натрий-кальциевое, оно более термостойкое, нежели калий-кальциевое. Стекло, несмотря на твердость, вещество аморфное, кристаллической структуры не имеет. И при нагреве выше 30 °C ионы натрия становятся довольно подвижными и у стекла появляется некоторая проводимость. Благодаря которой можно провести электролиз сквозь стекло.
Собрал довольно простую установку. Горелкой нагреваем стакан с натриевой селитрой. Тут надо не перегреть, при 39 °C селитра разлагается, а плавится она при 309 С. Плавно нагрели лампу до той же температуры, и опустили в расплав селитры на двадцать миллиметров, вверх выводами. Дали накал на катод, дали анодное напряжение. Но плюс не на анод, а на кусок проволоки, что в расплаве селитры. Минус — штатно, на катод. И все на скрутках, паять тут нельзя, припой вытечет.
От накала вокруг катода появилось облако электронов, которые пытаются удалиться от отрицательного напряжения катода. Положительное напряжение за стеклом колбы, электроны стремятся туда, им мешают
молекулы остаточных газов. Сталкиваясь с электронами, они образуют ионы. Но это сейчас не важно, главное, что есть перенос электронов от катода к стеклу, за которым расплав селитры как анод.Ионы натрия в стекле начинают двигаться от анода к катоду сквозь стекло. На внутренней поверхности колбы ион натрия получает электрон, принесенный от катода, и ион превращается в атом металлического натрия. Нехватка натрия в стекле пополняется из расплава селитры.
Через несколько минут работы установки заметно вырос анодный ток. Это значит что на внутренней поверхности колбы появился тончайший слой металла, проводимость всей цепи выросла. Но этого пока мало, слой должен быть довольно толстым, чтобы он мог поглощать газы. Можно даже посчитать, сколько прошло тока через анодную цепь, количество кулонов, электронов. Количество атомов натрия на внутренней поверхности колбы. Но мы просто продержали режим установки около часа. Отключили ток, вытащили лампу, медленно остудили не переворачивая. Натрий жидкий, надо чтобы затвердел. Очистили поверхность лампы и увидели зеркало на той части, что была погружена в расплав. Есть геттер!
Наверное, геттер уже хорошо прогрелся, и должен был поглотить остатки газов. К тому же это легкоплавкий натрий. Надо проверить. Поставили лампу в стенд, дали напряжения. Ток есть. А обратный? Обратного нет! Ура! Работает!
Стали испытывать уже всесторонне, сняли вольт-амперные характеристики. Характеристики не очень хорошие, если точнее — на грани работоспособности. Одна из причин — катод из вольфрама, у этого металла очень большая работа выхода электрона. Если по простому — чтобы он начал испускать электроны, его надо нагреть очень сильно, до 220 °C. Определяем по цвету свечения — светло-желтый. Как электролампа накаливания, ну может чуть слабее. Надо нанести покрытие из металла, имеющего меньшую работу выхода электронов. Из доступных подходит оксид кальция. Ни тория, ни бария, ни стронция у нас нет.
Еще заметил искажения вольт-амперной характеристики. Мне кажется, что эти искажения вызваны недостаточно глубоким вакуумом. Обратного анодного тока нет, значит — ионов нет. Инертный газ. Аргон! Точно! И он не поглощается геттером. А его в воздухе целый процент. Надо перед откачкой лампу продуть каким-нибудь газом, чтобы вытеснить воздух с аргоном. Углекислым газом? Так он «производится» из воздуха, и точно также содержит аргон. Нужен «синтезированный» газ. Да что я думаю! Электролизер производит кислород и водород в любых количествах. Кислород в лампе не нужен, а водород самое то. Атомы водорода очень маленькие, и он поглощается в небольших количествах многими металлами.
Ну и еще один момент — электровакуумный триод имеет много недостатков — главные из них — паразитная емкость между сеткой и анодом, мешающая работе на высокой частоте, и динатронный эффект — электроны ударяют по аноду и вызывают вторичную эмиссию. Для устранения этих недостатков надо добавить еще две вспомогательные сетки. Получится пентод — весьма совершенная лампа, достаточная для множества применений. А то, что размеры лампы еще подрастут в размерах, то не страшно. Так даже лучше — тепловой режим улучшится. Вот такие нужны доработки процесса.
* * *
Долго думал, какое напряжение выбрать для электрической сети фрегата, там же запроектирован металлообрабатывающий цех на нижней палубе. У нас сейчас распространены электродвигатели на два номинала — пятьдесят и двести двадцать вольт постоянного тока. На заводе уже много станков с электродвигателями на двести двадцать, очень удобно — провода тонкие, мощность двигателей немного выше в тех же габаритах. Но было уже несколько ударов током, хорошо, что не смертельных.