Чтение онлайн

ЖАНРЫ

Таинственные явления природы и Вселенной
Шрифт:

Звезды как люди — они рождаются, взрослеют, старятся и умирают. Но если одни уходят тихо и незаметно, то финал других сопровождается грандиозными космическими катаклизмами. Такие объекты видны на расстоянии во многие миллионы световых лет, а их яркость превосходит человеческое воображение: она превышает силу света сотен миллиардов звезд целой галактики.

Каждой звезде отмерен свой срок. Одни сгорают в считаные миллионы лет — когда по Земле разгуливали динозавры, некоторых таких звезд еще не было на свете. Другие будут жить долго: время жизни звезд, чуть менее массивных, чем Солнце, может достигать 25 млрд лет (вспомним, что со времени Большого взрыва прошло около 14 млрд лет). Солнце зажглось примерно 5 млрд лет назад.

Солнце облетает Галактику за 220 млн

лет и уже успело пройти эту траекторию 20 раз.

Итак, мы смотрим в ночное небо. Первое, что бросается в глаза, это отчетливые различия между звездами в блеске и цвете. Для того чтобы зафиксировать это различие, существует термин «звездная величина». По сути дела, абсолютная звездная величина — то же самое, что и светимость звезды (ее обычно выражают в единицах светимости Солнца и обозначают буквой L), то есть полное количество энергии, излучаемое звездой в единицу времени. Мы уже говорили о фантастической светимости Золотой Рыбы в Большом Магеллановом облаке, превосходящей светимость Солнца в 600 тыс. раз. Среди других ярких звезд нашего неба можно упомянуть Антарес (альфа Скорпиона), Бетельгейзе (альфа Ориона) и Ригель (бета Ориона), светимости которых превышают солнечную в 4 тыс., 8 тыс. и 45 тыс. раз соответственно. С другой стороны, светимость карликовых звезд может, в свою очередь, уступать светимости Солнца в тысячи и десятки тысяч раз.

Увидеть разницу в цвете невооруженным глазом удается только у очень ярких звезд. А вот небольшой любительский телескоп или даже приличный полевой бинокль заметно улучшат качество картинки. Скажем, Антарес и Бетельгейзе оказываются красными, Капелла — желтой, Сириус — белым, а Вега — голубовато-белой.

Цвет звезды, а следовательно, и ее спектр определяются температурой ее поверхностных слоев. При температуре 3000–4000 К звезда будет красной, при 6000–7000 К приобретет отчетливый желтоватый оттенок, а горячие звезды с температурой 10 000—12 000 К сияют белым или голубоватым светом.

Принято выделять семь основных спектральных классов, которые обозначают латинскими буквами О, В, A, F, G, К и М. Каждый спектральный класс разбит на 10 подклассов (от 0 до 9, с ростом в сторону уменьшения температуры). Таким образом, звезда со спектром В9 будет ближе по спектральным характеристикам к спектру А2, чем, например, к спектру В1. Звезды классов О — В — голубые (температура поверхности — примерно 100 000—80 000 К), A — F — белые (11 000—7 500 К), G — желтые (примерно 6000 К), К — оранжевые (около 5000 К), М — красные (2000–3000 К).

Наше Солнце относится к спектральному классу G2 (температура его поверхностных слоев — около 6000 К). Таким образом получается, что наше великолепное Солнце по астрономической классификации — всего лишь карлик, желтый карлик! Правда, диаметр Солнца составляет около 1,4 млн км — размеры для «карлика», скажем откровенно, немалые.

Некоторые звезды могут периодически менять свой блеск. Например, цефеиды представляют собой желтые сверхгиганты с температурой поверхности примерно такой же, как у Солнца. Но светят они гораздо ярче, потому что мощность их излучения превосходит солнечную в десятки тысяч раз. Периодическое изменение блеска цефеид связано со сложными физико-химическими процессами в их недрах, поэтому их принято называть истинными, или физическими, переменными. Звезда Мира из созвездия Кита тоже относится к числу истинных переменных, хотя период изменения блеска у нее гораздо больше и составляет примерно 11 мес. (у цефеид — от суток до месяца).

Однако встречаются переменные звезды, колебания блеска которых объясняются совсем иначе. Вот Алголь (бета Персея), звезда, которую в старину называли «глазом дьявола» и «вурдалаком». Ее яркость изменяется на целую звездную величину почти каждые трое суток. Но Алголь — это так называемая «затменная» двойная. Просто вокруг Алголя обращается слабая звезда — второй компонент двойной системы, орбита которой лежит в одной плоскости с земной орбитой. Когда она оказывается между Алголем и Землей на луче зрения земного наблюдателя, то частично его затмевает.

С другой стороны, красные гиганты нагреты относительно слабо, «всего лишь» до 2–3 тыс. градусов. Но суммарная интенсивность светового потока будет

весьма значительной по сравнению с Солнцем. Это потому, что красные гиганты — действительно гиганты. Они очень-очень большие. Пусть квадратный километр поверхности, скажем, Бетельгейзе светит относительно слабо, но площадь-то этой звезды на несколько порядков больше, чем Солнца! Поэтому мощность ее излучения во много раз превысит солнечную. В 1920 году удалось измерить диаметр Бетельгейзе. Оказалось, что она почти в 350 раз больше диаметра Солнца и составляет примерно 500 млн км.

Что будет, если Бетельгейзе окажется на месте нашего Солнца? Орбита, например, Марса находится в 220 млн км от Солнца. Все планеты земной группы (Меркурий, Венера, Земля и Марс) просто попали бы внутрь гигантской звезды. Как бы мы тогда писали и читали о Бетельгейзе?

Но не будем спешить. Объем Бетельгейзе в 40 млн раз больше объема Солнца. А ее масса оценивается всего лишь в 12–17 солнечных масс. О чем это говорит? О том, что красный сверхгигант, внутри которого могут поместиться несколько планетных орбит Солнечной системы, — нечто вроде огромного воздушного пузыря. Если средняя плотность солнечного вещества равна примерно 1,4 г/см3 (почти в полтора раза больше плотности воды), то у Бетельгейзе она будет в миллионы раз меньше, чем у воздуха, которым мы дышим. Вот вам и супергигант!

Но Бетельгейзе — еще не самый большой сверхгигант. Встречаются красные сверхгиганты столь невообразимо огромные, что звезды вроде Бетельгейзе рядом с ними просто «карлики в квадрате». Например, эпсилон Возничего. Он является инфракрасным сверхгигантом с поперечником в 3,7 млрд (!) км. Если поместить его на место Солнца, он без труда поглотит первые 6 планет (Меркурий, Венеру, Землю, Марс, Юпитер и Сатурн) и просто заполнит собой Солнечную систему вплоть до орбиты Урана.

Темные и холодные сверхгиганты вроде эпсилона Возничего должны быть пустыми разреженными мирами, ведь их вещество «размазано» по колоссальному объему. Плотность такого вещества мало отличается от плотности пустоты, от плотности вакуума.

Если в «красном» звездном классе М есть сверхгиганты, то, по логике, должны быть и красные карлики, заметно уступающие по массе Солнцу. Но они отнюдь не разреженные пузыри, а полноценные звезды. Они могут быть даже «упитаннее», плотнее нашего Солнца, и довольно существенно. Скажем, красный карлик Крюгер 60В легче Солнца всего впятеро, хотя его объем составляет 1/125 часть нашей звезды. Таким образом, его средняя плотность должна равняться 35 г/см3, что в 25 раз превосходит плотность Солнца (1,4 см3) и в полтора раза — плотность платины. Даже такое твердое небесное тело, как наша родная планета, имеет среднюю плотность порядка 5,5 г/см3 (плотность каменных пород земной коры составляет 2,6 г/см3, а к центру Земли она достигает величины 11,5 г/см3), то есть уступает Крюгеру более чем вшестеро.

Конечно, плотность всех небесных тел (даже исполинских газовых пузырей вроде Бетельгейзе) стремительно растет по направлению к центру. Чтобы Солнце могло стабильно существовать, чтобы не сколлапсировало под действием сил гравитации, плотность его центральных областей должна достигать величин порядка 100 г/см3, что превышает плотность платины в 5 раз. Понятно, что в центре Крюгера 60В эта величина будет раз в 100 больше.

Такие плотные-плотные красные карлики… Что же, в нашей Вселенной нет ничего плотнее? Есть. Это белые карлики. Белые карлики по звездным меркам — очень маленькие и очень горячие звезды. Температура их поверхностных слоев колеблется в широких пределах — от 5000 К у «старых» холодных звезд до 50 000 К у «молодых» и горячих. По массе они вполне сопоставимы с Солнцем, а вот их поперечник, как правило, не превышает диаметра Земли, а он составляет, как нам известно из школьного курса, примерно 12 800 км. Таким образом, их средняя плотность достигает величин порядка 106 г/см3 и превышает плотность нашего Солнца в сотни тысяч раз. Один кубический сантиметр вещества белого карлика может весить несколько тонн!

Поделиться с друзьями: