Таинственные явления природы и Вселенной
Шрифт:
А что такое звездная старость? Это когда выгорает почти весь водород в ядре. Что же происходит тогда? Ядро звезды начинает съеживаться, а его температура стремительно растет. В результате формируется очень плотная и горячая область, состоящая из гелия с небольшой примесью более тяжелых элементов. Газ в подобном состоянии называется вырожденным. В центральной части ядра ядерные реакции практически останавливаются, но довольно активно продолжают протекать на периферии. Звезда быстро разбухает, ее размеры и светимость значительно увеличиваются. Она сходит с главной последовательности и превращается в красный гигант с температурой поверхности около 3000 градусов Кельвина.
Хорошо, пусть водорода уже нет, но есть еще гелиевые термоядерные реакции. В центральных областях распухшей звезды гелий продолжает трансформироваться в углерод и кислород вплоть до самых тяжелых элементов. Но вот гелий тоже заканчивается. И здесь снова все решает первоначальная масса звезды. Если она была небольшой, вроде нашего Солнца, внешние
Белый карлик — это, по сути, умершая звезда. Все ядерное топливо сожжено, никаких реакций. Но объект продолжает излучать, а давление внутри него все еще с успехом противостоит собственной гравитации. Откуда это давление берется? Здесь вступают в дело уже знакомые нам своей парадоксальностью законы квантового мира. Под действием гравитации вещество белого карлика уплотняется настолько, что атомные ядра буквально втискиваются внутрь электронных оболочек соседних атомов. Электроны утрачивают интимную связь со своими родными атомами и начинают свободно путешествовать в межатомных пустотах по всему пространству звезды, в то время как голые ядра образуют устойчивую жесткую систему — некое подобие кристаллической решетки. Такое состояние называется вырожденным электронным газом, и хотя белый карлик продолжает остывать, средняя скорость электронов не уменьшается. Квантовая теория говорит, что электроны в электронном газе будут двигаться очень быстро. Такое квантово-механическое движение никак не связано с температурой вещества, оно создает давление, называемое давлением вырожденного электронного газа. И вот как раз эта сила уравновешивает у белых карликов силу собственной гравитации.
Постепенно остывающие образования, внутри которых весь водород выгорел, а ядерные реакции прекратились… Между прочим, в отдаленном будущем такая участь постигнет и Солнце. Примерно через 5–6 млрд лет наша родная звезда сожжет весь водород и превратится в красного гиганта. Его светимость вырастет в сотни раз, а радиус — в десятки. Жить на Земле в это время будет не слишком комфортно, так как температура у поверхности станет порядка 500 °C, а атмосфера сгорит. Так наше светило проживет несколько сотен миллионов лет, а потом сбросит периферийные оболочки и станет белым карликом.
Фотон добирается из центра Солнца к его поверхности 40 тыс. лет, а оттуда до Земли — 8,3 минуты.
Если же масса звезды была велика — превышала массу Солнца в 10 и более раз — в центре ее формируется ядро, состоящее из тяжелых элементов, окруженных более легкими слоями. В какой-то момент такое ядро теряет устойчивость и начинается гравитационный коллапс — катастрофическое свертывание звезды внутрь себя. Этот процесс необратим и неумолим. В зависимости от массы ядра его центральная часть либо превращается в сверхплотный объект — нейтронную звезду, либо коллапсирует до конца, образуя черную дыру. Чудовищная гравитационная энергия, которая выделяется в ходе сжатия, срывает оболочку и внешнюю часть ядра, выбрасывая их наружу с молниеподобной скоростью. Происходит грандиозный взрыв. Это то, что называется взрывом сверхновой. Нам не известны космические катаклизмы более масштабные, чем вспышки сверхновых. В течение некоторого времени такая звезда светит ярче целой галактики. Постепенно сброшенная газовая оболочка остынет и затормозится, а со временем сформирует газово-пылевое облако, в котором будет много тяжелых элементов. Когда это облако начнет конденсироваться под действием гравитационных сил, внутри него может вспыхнуть новая звезда. Подобные звезды, родившиеся на руинах прежних, принято называть звездами второго поколения, и наше Солнце, похоже, как раз относится именно к их числу.
Таким образом, в природе наблюдается некоторая преемственность: массивные звезды первого поколения гибнут, обогащая межзвездное пространство тяжелыми элементами, служащими строительным материалом для звезд второго поколения. Все химические элементы тяжелее гелия образовались в звездных недрах в ходе термоядерного синтеза, а самые тяжелые элементы возникли при вспышках сверхновых. Все, что нас окружает на Земле, да и сама Земля — это звездное вещество, доставшееся нам в наследство.
Новые и сверхновые
Вспышка сверхновой — довольно редкое явление. За последнюю тысячу лет в нашей галактике вспыхнуло всего три сверхновые — в 1054, 1572 и в 1604 годах. Сверхновую 1572 года, вспыхнувшую в созвездии Кассиопеи, наблюдал датский астроном Тихо Браге. В период максимума своего блеска она сияла ярче Венеры. Сверхновая 1604 года уступала в яркости звезде Тихо Браге, но все же и она в максимуме блеска соперничала с Юпитером. Она зажглась в созвездии Змееносца, и ее наблюдали Иоганн Кеплер и Галилео Галилей. Что касается сверхновой 1054 года, то о ней сохранились упоминания в китайских хрониках, из которых следует, что она была видна даже днем, а в максимуме блеска многократно превосходила Венеру. Сегодня считается, что Крабовидная туманность в созвездии Тельца и находящийся в
ней пульсар — быстро вращающаяся нейтронная звезда — являются остатками сверхновой 1054 года.Правда, «редкость» — понятие очень подозрительное, если иметь в виду астрономию и космологию. Редкие взрывы сверхновых сегодня обнаруживают все чаще и чаще. В этом ничего нет странного. Вселенная ведь очень большая, и если некоторое событие повторяется, то таких повторов тоже будет много. Галактик насчитывается десятки миллиардов, и где-нибудь сверхновая обязательно вспыхивает. А наблюдательная техника-то становится все совершеннее!
Выделяют два основных типа сверхновых в зависимости от характера спектра: если в спектре вспышки нет линий водорода, сверхновую относят к типу I, а если водород есть — к типу II. Сверхновые типа I — старые, не очень массивные звезды, вспыхивающие как в эллиптических, так и в спиральных галактиках. Мощность излучения сверхновых этого типа особенно велика. Сверхновые типа II связывают с молодыми массивными звездами, быстро прошедшими все стадии эволюции. Их обнаруживают в рукавах спиральных галактик, где продолжают идти процессы звездообразования, а в эллиптических галактиках они не вспыхивают никогда.
Естественная логика говорит нам: если есть «сверхновые» то должны быть просто «новые». И да, они действительно существуют. Они также вспыхивают, и вспыхивают потому, что взрываются. Новые звезды вспыхивают сравнительно часто (около 100 вспышек в год только в нашей галактике), мощность излучения этих звезд в тысячи и десятки тысяч раз меньше. Все без исключения новые являются тесными двойными системами, как правило, состоящими из белого карлика и нормальной звезды. Если в такой новой звезде что-то взрывается, то это обычно белый карлик. Из-за близости между компонентами двойной системы вещество поверхностных слоев спутника перетекает на белый карлик, и когда его накапливается много, термоядерные реакции могут зажечься вновь. Процесс носит вспышечный характер и напоминает взрыв гигантской водородной бомбы. На протяжении нескольких часов или суток звезда достигает максимума блеска, а затем долгие месяцы или даже годы медленно угасает. Масса сброшенной оболочки всегда значительно меньше массы самой звезды, так что она не разрушается при взрыве, как сверхновая. Принято считать, что новые теряют 1/100 000 своей массы, тогда как у сверхновых типа I это где-то между 1/10 и 9/10 массы, а у сверхновых типа II — от 1/100 до 1/10 массы. По прошествии определенного времени новая звезда может вспыхнуть повторно (иногда это происходит скоро даже по человеческим меркам — через несколько десятилетий). Сверхновые звезды повторно не зажигаются никогда.
При соприкосновении двух кусочков металла в космосе они сольются друг с другом, если на их поверхности не будет окислов. На Земле такого не происходит, потому что в атмосфере на поверхности сразу образуются оксиды.
Новые, сверхновые, а теперь — нейтронные
После катастрофического взрыва массивной сверхновой остается крохотный сгусток чудовищной плотности — нейтронная звезда. Белый карлик состоит из вырожденного электронного газа, который образуется, когда атомы вдвигаются в другие атомы и их электроны становятся общими. С нейтронной звездой — еще хуже! Гравитационное сжатие при взрыве сверхновой оказывается столь сильным, что части атомов вдвигаются друг в друга. А из чего состоит атом? Из ядра, в котором протоны, и из оболочек, на которых сидят электроны. Протоны, как известно, положительно заряжены, электроны — отрицательно. Так вот из-за чудовищной гравитации электроны сгоняются со своих орбит и «втискиваются» в протоны. В результате этих теснейших отношений получаются нейтроны — тяжелые, нейтральные в отношении электрического заряда частицы. Кроме нейтронов в нейтронной звезде почти ничего нет (только немножко протонов и электронов). Из-за этого масса нейтронной звезды очень велика. Кроме того, в нейтронной звезде чрезвычайно тесно. Давление в центре достигает огромных значений — может в несколько раз превышать плотность атомного ядра. Можно сказать, что нейтронная звезда представляет собой сплошное атомное ядро, причем изрядной даже по ядерным меркам плотности.
Плотность нейтронной звезды оценивается в 5 x 1015 г/см3. Что это значит? Это значит, что кубик вещества нейтронной звезды со стороной 1 см весит несколько миллиардов тонн! Или скажем иначе: при массе в два Солнца нейтронная звезда будет иметь размеры всего лишь 10–15 км в диаметре! Такая сверхувесистая малютка.
Структура нейтронной звезды сложна и плохо изучена. Как ведет себя вещество при плотностях, превосходящих ядерную? Есть несколько моделей, описывающих строение нейтронных звезд, но общепризнанной и стопроцентно достоверной картины нет. В чем точно уверены ученые, так это в том, что нейтронная звезда похожа по структуре на слоеный пирог. Поверхностный слой — это плазма, захватывающая прилетающие из космоса частицы. Далее идет слой, имеющий кристаллическую структуру, а вслед за ним — слой из тяжелых ядер, нейтронов и электронов. Еще глубже располагаются плотно упакованные нейтроны, а в самом центре находится ядро из так называемой кварк-глюонной плазмы. По направлению от поверхности к центру плотность возрастает от 4,3 x 1011 г/см3 до 1,2 x 1015 г/см3.