Танец жизни. Новая наука о том, как клетка становится человеком
Шрифт:
Примерно в этот период несчастный случай парадоксальным образом изменил мою жизнь к лучшему. В 1993 году я поскользнулась на первом зимнем снегу и сломала правую руку. Старомодная гипсовая повязка мешала мне водить машину, поэтому я не могла ездить в лабораторию. Внезапно я получила массу времени для исследования других своих интересов. Без правой руки рисовать не получалось, зато я могла писать. Я начала сочинять стихи (они были ужасные, и с радостью сообщаю, что я их уничтожила). Потом я поняла, что могу использовать это время для описания моих экспериментов в рамках докторской диссертации, и Тарковский одобрил мою идею. На следующий год я получила докторскую степень.
Моя новая квалификация, по сути, ничего не изменила. В лаборатории Тарковского я занимала штатную должность, поэтому продолжила проводить исследования и преподавать.
Кшис мирился с моей научной жизнью. Хотя его не особо радовал тот факт, что я проводила в лаборатории столько времени. А мне не нравились мои заграничные командировки. Он никогда не пытался меня остановить, но нам обоим было ясно, что во время семейных встреч лучше не говорить о науке. Меж тем Тарковский выразил надежду, что опыт работы за границей удовлетворил мое любопытство. И мне, разумеется, льстило его желание оставить меня в своей лаборатории. Друзья тоже хотели, чтобы я никуда не уезжала. Но у жизни были на меня другие планы. Шаг за шагом она уводила меня из Польши.
Хотя Тарковский любил держать своих воспитанников при себе, один из них, Яцек Кубяк, все-таки ускользнул. Он подал заявление на должность аспиранта в лаборатории Бернарда Маро, находившейся в институте Жака Моно в Париже. Обосновавшись там, Яцек обнаружил, что Маро не терпелось выяснить, можно ли перенести на крыс те исследования, которые его команда проводила на мышиных эмбрионах. К тому времени я сделалась экспертом по крысиным эмбрионам, что было редкостью, и Яцек убедил Маро принять меня. Следующие три года Французский национальный центр научных исследований финансировал мои визиты в Париж, совершаемые каждое лето, когда я была свободна от преподавания в Варшавском университете.
Удивительно, но мы умудрялись публиковать исследования каждое лето. Великих открытий не было, но понемногу выстраивался относительно неизведанный мир крысиной эмбриологии. Там я впервые попробовала конфокальный микроскоп; его потрясающие красочные трехмерные изображения наполнили мои исследования силой визуализации и подарили просветление, которое приходит с научным искусством.
Мне нравилась жизнь в Париже; запомнились прогулки, городская архитектура, художественные галереи, chaussons aux pommes[3] и кино — кажется, я пересмотрела всего Джона Кассаветиса, но не только. Мне повезло, что за меня взялась кузина мужа Агнешка Вегларска (ныне де Рулак), по случайному совпадению проживавшая в Париже. Очень красивая и щедрая, с отличным чувством юмора, она приступила к организации нашей светской жизни (теннисные матчи в Люксембургском саду, кафе и винтажные магазины в Ле Маре), а я развлекала ее вечерним посещением вивария, когда подготавливала крыс к экспериментам следующего дня. Всякий раз, думая о Париже, я вспоминаю не только свою работу, но и наши с Агнешкой приключения.
В Париже у меня была возможность продолжить свои постдокторские исследования, однако я уже не была такой пластичной, как раньше, когда пребывала в восторге от академического духа и традиций Оксфорда. В итоге моим следующим пунктом назначения стал Кембридж. Разумеется, чисто случайно. Во время двухдневного визита в Кембридж я повстречалась с одним из своих самых сильных вдохновителей — ученым Мартином Эвансом, который в 1981 году выделил эмбриональные стволовые клетки, способные превращаться в любые клетки организма. В 2007 году за эту работу (к которой мы вернемся в главе 10, когда будем обсуждать регенеративную медицину) он удостоился Нобелевской премии.
Хотя к тому моменту я уже интересовалась стволовыми клетками, всерьез меня увлек ими Билл Колледж из исследовательской группы Мартина, изучавший ген c-mos и его роль в созревании яйцеклетки. Если бы Мартин не пригласил меня в свою команду и я бы не получила двухгодовую стипендию от Европейской организации молекулярной биологии, я до сих пор была бы в Варшаве.
Нелегко было покидать дом на два года, я испытывала смешанные эмоции. Но в конце 1995 года я прибыла в Кембридж и погрузилась в науку и академический образ жизни, который никогда раньше не считала своим. Наука возобладала над всем, оставив в моей жизни
не так много места для чего-то другого.Благодаря удаче я работала в Кембридже сразу с двумя людьми, исключительными как с профессиональной, так и с человеческой точки зрения. Один из них, разумеется, Мартин. Другой — сам Джон Гёрдон, еще сильнее повлиявший на мою жизнь и научную деятельность. Кажется, наше общение вдохновляло не только меня, ведь через несколько лет Джон получил Нобелевскую премию за важнейшее открытие того, что зрелую клетку, например кожи, можно снова сделать эмбриональной.
Первые годы работы в Кембридже с Мартином были не только насыщенными, но и (не могу выразиться иначе) сбивающими с толку. Данные моих исследований впервые подсказывали, что именно подталкивает клетки эмбриона на конкретный путь развития. Эти результаты (противоречащие привычным представлениям, на которые повлиял мой наставник Тарковский) показывали, что судьба клеток определяется гораздо раньше, чем считалось. В это неожиданное открытие никто не верил. И поначалу я тоже.
У людей все иначе?
Хорошо известно, что более «примитивные» лабораторные животные (лягушки, дрозофилы, круглые черви) начинают свою жизнь по плану: говоря простыми словами, яйцеклетки этих существ определяют судьбу отдельных клеток организма. Все потому, что яйцеклетка полярна (имеет разные «концы») и при расщеплении надвое каждая клетка наследует разный конец материнской клетки, а значит, и разную информацию — «адрес», определяющий судьбу. У таких организмов потеря одной клетки приводит к потере структуры, вырастающей из этой клетки. Подобное развитие называют мозаичным. Но если потомки оставшейся клетки по-прежнему могут дать начало тем структурам, за которые отвечала потерянная клетка, эмбрион называют регуляционным.
Есть множество примеров полярных яйцеклеток. Яйца дрозофил имеют градиент белков, обусловленный генами Bicoid и Hunchback и помогающий создать шаблон будущих головы и груди эмбриона дрозофилы, в то время как задняя часть насекомого формируется генами Nanos и Caudal. Как ясно из названия, ген Hunchback (горбатая спина) важен для развития туловища (груди) дрозофилы. Изящные исследования Христианы (Янни) Нюслайн-Фольхард и Эрика Вишауса продемонстрировали то, как гены закладывают ось и части тела дрозофилы. В 1995 году они получили за эту работу Нобелевскую премию, разделив ее с Эдом Льюисом из Калифорнийского технологического института (Калтеха), который десятки лет исследовал генетические мутации дрозофил, трансформирующие их жужжальца в дополнительную пару крыльев. Поразительно, но гены, ответственные за эти метаморфозы, очень консервативны и присутствуют у нас с вами; разница в том, что у млекопитающих развитие идет гибким путем, а у насекомых — ригидным путем. Полярность яйцеклеток мух такова, что еще до оплодотворения задается четкое направление будущего развития, зато у млекопитающих нет такой жесткой детерминированности.
Сперматозоиды тоже играют важную роль в формировании плана тела. Развитие яйцеклеток лягушек и круглых червей зависит от точки проникновения в них сперматозоида [3]. При оплодотворении яйцеклетки червя происходит неравномерное распределение так называемых РAR-белков. Они помечают те клетки, которым суждено стать передом червя, или передним отделом, и те, которым суждено стать задним [4]. PAR-белки регулируют полярность клеток во многих контекстах и у самых разных животных, включая (как мы увидим дальше) эмбрионы млекопитающих. Их универсальность позволяет предположить, что они являются потомками древнего «расцветочного» механизма.
Мартин Джонсон вместе со своей командой из Кембриджского университета выяснил, что на восьмиклеточной стадии все клетки мышиного эмбриона приобретают наружно-внутреннюю полярность. Тем самым закладывается фундамент для двух клеточных линий, когда от дочерней клетки, унаследовавшей наружную часть материнской клетки, получаются клетки трофоэктодермы, формирующие плаценту, а дочерние клетки, наследующие внутреннюю часть материнской клетки, создают эпибласт — слой прогениторных клеток, строящих будущий организм [5]. В самые первые дни моего пребывания в Кембридже мы обнаружили, что эта полярность вызвана неравномерным распределением РAR-белков [6].