Тени разума. В поисках науки о сознании
Шрифт:
Что касается точки зрения C, то здесь возникают проблемы иного рода, — связанные, в основном, с ее выраженным спекулятивным характером. Что заставит нас поверить в то, что природные феномены действительно могут демонстрировать какое-то там невычислимое поведение? Всем известно, что мощь современной науки опирается (и, чем дальше, тем больше) на тот факт, что поведение любого физического объекта можно моделировать с помощью численных методов, при этом точность получаемой модели зависит исключительно от «комплексности» выполненных вычислений. С ростом научного понимания стремительно растет и прогнозирующая способность таких численных моделей. В практическом отношении этим ростом мы, по большей части, обязаны быстрому развитию — в основном, во второй половине двадцатого века — вычислительных устройств необычайной мощи, скорости и точности. В результате перед нами открылся широкий простор для проведения все более тесных аналогий между тем, что происходит в недрах современных универсальных компьютеров, и всевозможными проявлениями самой материальной Вселенной. Имеются ли у нас сколько-нибудь осмысленные указания на то, что происходящее представляет собой лишь временную фазу развития науки? Чего ради мы должны всерьез рассматривать возможность существования физических процессов, неподвластных эффективному вычислительному подходу?
Если в рамках существующей
Важность этого выбора трудно переоценить. Многие люди с научным складом мышления говорили мне, что они вполне согласны с выдвинутой мною в НРК позицией (т.е. с тем, что деятельность разума включает в себя какие-то «невычислительные» процессы), однако вместе с тем они были убеждены в том, что для отыскания этих самых «невычислительных» процессов вовсе не нужно дожидаться каких-то революционных прорывов в теоретической физике. Как мне представляется, их точка зрения основывается на том факте, что крайняя сложность процессов, обусловливающих функционирование разума, выходит далеко за рамки стандартной компьютерной аналогии (в том виде, в каком ее впервые предложили Маккаллох и Питтс в 1943 году), в которой нейроны и синаптические связи представляются аналогами транзисторов, а аксоны выступают в роли проводников. Они говорят о сложности химических процессов, связанных с деятельностью нейромедиаторов, управляющих синаптической передачей нервных импульсов, или о том, что область действия этих химических соединений далеко не всегда ограничивается непосредственной окрестностью соответствующей синаптической связи. Кроме того, они указывают на чрезвычайно хитроумное устройство самих нейронов {52} , важнейшие из подструктур которых (например, цитоскелет — о его действительно решающей роли в контексте нашего исследования мы подробнее поговорим ниже; см. §§7.4-7.7 ) оказывают существенное влияние на нейронную активность в целом. К делу привлекаются и прямые электромагнитные взаимодействия («резонансные эффекты», например), которые невозможно просто так объяснить обычными нервными импульсами; утверждают также, что в функционировании мозга важную роль должны играть эффекты, описываемые квантовой теорией, имея в виду либо квантовые неопределенности, либо нелокальные коллективные квантовые взаимодействия (например, феномен так называемой «конденсации Бозе—Эйнштейна» {53} ).
Хотя окончательных и недвусмысленных математических теорем на этот счет в нашем распоряжении практически нет {54} все же вряд ли кто-либо всерьез сомневается в том, что все существующие физические теории являются по своей природе и в своей основе вычислительными — возможное же привнесение несущественной случайной составляющей обусловлено существованием такого феномена, как «квантовые измерения». Вопреки ожиданиям, я думаю, что возможность протекания невычислительных (и неслучайных) процессов в физических системах, действующих в рамках существующей физической теории, все же чрезвычайно интересна сама по себе и, разумеется, достойна самого подробного математического исследования. Такое исследование вполне может преподнести нам немало сюрпризов — возможно, нам и в самом деле удастся наткнуться на нечто хитроумное и совершенно невычислимое. На современном же этапе развития науки вероятность обнаружения в рамках известных нам физических законов какой-либо подлинной невычислимости представляется мне крайне малой. Следовательно, необходимо в самих законах отыскать слабые места и расширить их в достаточной степени для того, чтобы включить ту невычислимость, которая, согласно вышеприведенным аргументам, неизбежно присутствует в мыслительной деятельности человека.
Что же это за слабые места? Лично у меня почти нет сомнений относительно того, где именно следует нанести наиболее массированный удар по существующей физической теории — наислабейшим ее звеном является уже упоминавшаяся выше процедура так называемого «квантового измерения». На нынешнем этапе своего развития теория содержит в себе некоторые противоречия (или, по меньшей мере, несообразности) в отношении всей существующей процедуры этого самого «измерения». Неясно даже, на каком именно этапе в той или иной ситуации эту процедуру следует применять. Более того, вследствие существенно случайного характера самой процедуры, ее наблюдаемые физические проявления оказываются весьма отличными от всего того, что известно нам по другим фундаментальным процессам. Подробнее эти вопросы мы обсудим во второй части книги.
Как мне кажется, процедура измерения нуждается в кардинальном пересмотре — не исключено, что попутно придется подвергнуть существенным изменениям и самые основы теоретической физики. Кое-какие имеющиеся у меня предложения я изложу во второй части книги ( §6.12 ). Представленные в предыдущих разделах рассуждения содержат весьма сильные доводы в пользу того, что чистую случайностьсуществующей теории измерения необходимо заменить чем-то иным, чем-то таким, где определяющую роль будут играть существенно невычислимыеэлементы. Более того, как мы увидим ниже ( §7.9 ), эта невычислимость непременно окажется какой угодно, но только не простой. (Например, закона, который, посредством какого-то нового физического процесса, «всего лишь» позволит нам устанавливать истинность 1– высказываний — т.е. решать тьюрингову «проблему остановки» — будет самого по себе недостаточно.)
Отыскание подобной, новой и непростой, физической
теории уже само по себе является достаточно серьезным вызовом нашим интеллектуальным способностям, однако это еще далеко не все. Необходимо также потребовать, чтобы найденный нами правдоподобный основополагающий принцип такого гипотетического физического поведения имел самое непосредственное отношение к функционированию мозга — сообразно со всеми ограничениями и критериями достоверности, предъявляемыми современной наукой о строении мозга. Нет никакого сомнения в том, что и здесь, учитывая теперешний уровень нашего понимания, не обойтись без изрядной доли умозрительности. Однако как раз в этой области за последнее время были совершены некоторые подлинно революционные открытия (в период написания НРК я об этом, естественно, не знал), связанные с цитоскелетной подструктурой нейронов (подробнее см. §7.4 ), — благодаря этим открытиям предположение о том, что существенные для функционирования мозга процессы происходят именно на границе между квантовыми и классическими феноменами, приобретает гораздо большее правдоподобие, чем можно было представить себе прежде. Эти вопросы мы также обсудим во второй части ( §§7.5-7.7 ).Необходимо еще раз подчеркнуть, что предметом наших поисков никоим образом не должно стать простое усложнениев рамках существующей физической теории. Кто-то, например, убежден в том, что абсолютно немыслимо построить адекватную модель сложных перемещений и хитроумной химической активности соединений-нейромедиаторов, вследствие чего подробное физическое описание функционирования мозга вычислительными методами неосуществимо. Однако, говоря о невычислительном поведении, я имею в виду совсем не это. Я полностью согласен с тем, что наших познаний о совокупности биологических структур и электрохимических механизмов, отвечающей за функциональную деятельность мозга, совершенно недостаточно для сколько-нибудь серьезной попытки численного моделирования. Более того, даже если бы у нас и достало познаний, то построить рабочую модель деятельности мозга за какой-либо приемлемый промежуток времени нам все равно не удастся ввиду недостаточно высокой вычислительной мощности современных компьютеров и отсутствия соответствующей методологии программирования. Однако в принципе, объединив уже существующие представления о химии соединений-нейромедиаторов, об обеспечивающих их перенос механизмах, о зависимости эффективности этих соединений от конкретных условий среды, биоэлектрических потенциалов, электромагнитных полей и т.д., выполнить подобное моделирование вполне возможно. Следовательно, упомянутые общие механизмы, предположительно согласующиеся с требованиями существующей физической теории, не в состоянии обеспечить той невычислимости, какой требуют вышеприведенные аргументы.
Такая вычислительная (теоретическая) модель может включать в себя и элементы хаотического поведения. Мы даже, как и в нашем прежнем обсуждении хаотических систем (см. §§1.7 , 3.10 , 3.11 , 3.22 ), не станем настаивать на том, чтобы эта модель воспроизводила бы какой-то конкретный мозг; достаточно будет и «типичного случая». При создании искусственного интеллекта вовсе не требуется моделировать интеллектуальные способности какого-то конкретного индивидуума, мы лишь стремимся (в перспективе) воспроизвести интеллектуальное поведение индивидуума типичного. (Аналогичным образом, если помните, обстоит дело и с моделированием погоды: никто не требует непременно воспроизводить данную конкретную погоду, нам нужна модель погоды вообще.) Если известны механизмы, обусловливающие поведение предлагаемой модели мозга, то эта модель (при условии, что упомянутые механизмы не находятся в противоречии с современной вычислительной физикой) опять-таки представляет собой познаваемую вычислительную систему, пусть и с какими-то явно заданными случайными элементами — этот случай также вполне укладывается в рамки представленных выше рассуждений.
Можно пойти еще дальше и потребовать, чтобы предполагаемый модельный мозг представлял собой результат развития посредством процесса, аналогичного дарвиновской эволюции, неких примитивных форм жизни, поведение которых исчерпывающе описывается известными физическими законами — или законами какой-либо иной численно-модельной физики (подобной той двумерной физике, которая действует в изобретенной Джоном Хортоном Конуэем оригинальной математической игре под названием «Жизнь» {55} ). Ничто не мешает нам вообразить, что в результате такой дарвиновской эволюции может развиться некое «сообщество роботов», подобное тому, что мы рассматривали в §§3.5 , 3.9 , 3.19 и 3.23 . Впрочем, и в этом случае мы получим целиком и полностью вычислительную систему, к которой будут применимы аргументы, представленные в §§3.14-3.21 . Для того чтобы ввести в эту вычислительную систему концепцию «-утверждения» (с тем, чтобы к ней можно было в полном объеме применить приведенную выше аргументацию), нам, помимо прочего, потребуется еще и этап «человеческого вмешательства», целью которого как раз и будет сообщить роботам строгий смысл присвоения статуса . Можно устроить так, чтобы этот этап инициировался автоматически — согласно некоторому эффективному критерию — именно в тот период времени, когда роботы начинают приобретать соответствующие коммуникационные способности. По-видимому, нет никаких препятствий к тому, чтобы объединить все эти элементы в автоматическую познаваемую вычислительную систему (в том смысле, что познаваемыми являются лежащие в ее основе механизмы, пусть даже мы пока не можем практически выполнить необходимые вычисления ни на одном из современных или ожидаемых в обозримом будущем компьютеров). Как и прежде, противоречие выводится из предположения, что такая система может достичь уровня человеческого математического понимания, достаточного для восприятия теоремы Гёделя.
Следующее часто высказываемое возражение касается уместности применения к вопросам человеческой психологии математических доказательств, подобных тем, на которые я опираюсь в своем исследовании, — никакая умственная деятельность не бывает настолько точна, чтобы ее таким образом анализировать. Придерживающиеся подобных взглядов люди, очевидно, полагают, что никакие частные доказательства, описывающие математическую природу физических феноменов, которые, возможно, обусловливают функционирование нашего мозга, не могут иметь непосредственного отношения к пониманию деятельности человеческого разума. Они согласны с тем, что поведение человека действительно «невычислимо», однако полагают, что эта невычислимость является всего-навсего отражением общей неприменимости математических и физических соображений к вопросам человеческой психологии. Они утверждают — и не без оснований, — что гораздо уместнее в этом смысле исследовать чрезвычайно сложную организацию нашего мозга, равно как и наших общественных и образовательных структур, нежели какие-то конкретные физические феномены, волею случая ответственные за отдельные физические процессы, посредством которых реализуются те или иные функции человеческого мозга.