Тени разума. В поисках науки о сознании
Шрифт:
Рис. 4.5. В принципе наклон светового конуса может стать настолько большим, что сигналы смогут распространяться в минковскианское прошлое.
Следует упомянуть и еще об одном неявном обстоятельстве: «угол наклона» единичного светового конуса не является величиной, измеримой физически, а потому не имеет в сущности никакого физического смысла и не может послужить мерой действительногоуменьшения или увеличения абсолютной скорости. Лучшим способом проиллюстрировать это обстоятельство будет следующий: вообразим, что изображение, представленное на рис. 4.3 , нанесено на тонкий лист резины, что позволит поворачивать и деформировать каждый отдельный световой конус вокруг окрестности его вершины (см. рис. 4.6 ) до тех пор, пока он не расположится «вертикально», — т.е. так, как располагаются световые конусы в пространстве специальной относительности Минковского (рис. 4.2 ). При этом нет никакой возможности обнаружить (посредством локальных экспериментов), является ли «наклонным» световой конус того или иного конкретного события. Если же мы намерены настаивать
Рис. 4.6. Вообразим пространство-время в виде резинового листа с нанесенными на нем световыми конусами. Каждый отдельный световой конус можно поворачивать (растягивая резину) до тех пор, пока все они не выстроятся в стандартную минковскианскую картину.
Впрочем, если говорить вообще, то поворачивать тот или иной конкретный световой конус до его минковскианской ориентации мы можем лишь за счет деформации — и удаленияот минковскианской ориентации — некоторых из соседних световых конусов. Возникает, в общем случае, «математическое препятствие», в силу которого невозможно деформировать лист резины таким образом, чтобы все световые конусы выстроились в стандартный минковскианский порядок, показанный на рис. 4.2 . В четырехмерном пространстве-времени это препятствие описывается посредством математического объекта, называемого конформным тензором Вейля— в НРК мы ввели для этого тензора обозначение WEYL(см. НРК, с. 210). (Тензор WEYLдает ровно половину — «конформную» половину — информации, содержащейся в полном тензоре пространственно-временной кривизны Римана; впрочем, полагаю, что в данной ситуации беспокоиться о точном смысле этих терминов особой необходимости нет.) Развернуть всесветовые конусы в минковскианский порядок нам удастся лишь в том случае, если WEYLбудет равен нулю. Тензор WEYLесть мера гравитационного поля — в смысле гравитационной приливной деформации, — т.е. именно гравитационное полеи является тем самым препятствием, которое не дает нам «выпрямить» все световые конусы сразу.
Эту тензорную величину, конечно же, можно измерить физически. WEYL– тензорное гравитационное поле, например, Луны воздействует на Землю и вызывает ее приливную деформацию — внося тем самым основной вклад в возникновение приливов (см. НРК, с. 204, рис. 5.25). Этот эффект, впрочем, не связан непосредственно с наклоном световых конусов, а представляет собой лишь самое обычное проявление ньютоновского гравитационного воздействия. Более подходящим к случаю выглядит другой наблюдаемый эффект, так называемый эффект гравитационной линзы, предсказанный в теории Эйнштейна. Впервые гравитационную линзу наблюдал Артур Эддингтон во время экспедиции на остров Принсипи в 1919 году; при этом вызванное гравитационным полем Солнца искажение картины звездного неба было самым тщательным образом зарегистрировано. Звездное небо вблизи Солнца словно растягивается — при этом, скажем, небольшой круг из звезд представляется наблюдателю в виде эллипса (см. рис. 4.7). В данном случае воздействие WEYL– тензорного гравитационного поля на структуру световых конусов пространства-времени наблюдалось почти непосредственно. В последние годы эффект гравитационной линзы находит широкое применение в качестве инструмента наблюдательной астрономии и космологии. Свет от отдаленного квазара порой доходит до нас в искаженном виде, поскольку на его пути оказывается какая-либо крупная масса (например, галактика; см. рис. 4.8 ). Из наблюдаемых при этом искажений «внешности» квазара (вкупе с эффектами временной задержки) можно извлечь весьма ценные сведения о соответствующих расстояниях, массах и т.д. Все это можно полагать достаточно недвусмысленным свидетельством в пользу того, что феномен наклона световых конусов действительно существует, а также того, что WEYL– эффекты непосредственно измеримы.
Рис. 4.7. Непосредственно наблюдаемый эффект наклона световых конусов. Пространственно-временное WEYL– искривление проявляется в виде искажения картины звездного неба в результате отклонения световых лучей под воздействием гравитационного поля Солнца. Круг из звезд представляется наблюдателю эллипсом.
Рис. 4.8. Эффект эйнштейновского отклонения света широко используется сегодня в наблюдательной астрономии. По тому, насколько искажено изображение отдаленного квазара, можно оценить массу галактики, находящейся между квазаром и наблюдателем.
Предыдущие замечания наглядно иллюстрируют тот факт, что «наклон» световых конусов, т.е. гравитационное искажение причинности, представляет собой не нечто эфемерное, но вполне реальныйфеномен, который нельзя исчерпывающе объяснить каким бы то ни было остаточным (либо «эмергентным») свойством, возникающим у достигшего достаточной величины скопления материи. Гравитация имеет собственную уникальную природу, отличную от природы прочих физических процессов; на уровне тех сил, что существенны для фундаментальных
частиц, гравитация непосредственно не наблюдается — тем не менее, она присутствует и здесь, и присутствует постоянно. Наклон световых конусов — прерогатива гравитации, никакие другиеиз известных современной физике сил и взаимодействий на это не способны. Таким образом, в этом фундаментальном отношении гравитация представляет собой нечто особенное, нечто принципиально отличноеот всех известных нам сил и физических воздействий. В самом деле, согласно классической общей теории относительности, наклон светового конуса вызывает присутствие любого материального тела, будь оно даже мельчайшей из песчинок (хотя в этом случае наклон будет, конечно же, крайне незначителен). В принципе, для наклона светового конуса достаточно и отдельного электрона — просто величина производимого подобными объектами наклона слишком мала, чтобы можно было говорить о каком бы то ни было непосредственно наблюдаемом его эффекте.Гравитационные взаимодействия наблюдались на примере объектов, значительно больших, нежели песчинки, но все же гораздо меньших, чем, например, Луна. В 1798 году Генри Кавендишу удалось измерить силу гравитационного притяжения шара массой всего около 10 5граммов. (Этот знаменитый опыт Кавендиша основан на идее, выдвинутой ранее Джоном Мичеллом.) Возможности современной техники позволяют обнаружить гравитационное притяжение объектов значительно менее массивных (см., например, [ 60 ]). Впрочем, обнаружить в какой-либо из этих ситуаций эффект наклона световых конусов никакая современная техника пока не в состоянии. Наблюдать этот эффект непосредственно можно только в присутствии действительно огромных масс; а то, что наклон световых конусов создают и малые массы (величиной с песчинку), является очевидным следствием из теории относительности Эйнштейна.
Гравитационные эффекты невозможно сколько-нибудь точно смоделировать посредством какой бы то ни было комбинации других физических полей или сил. Гравитация совершенно уникальна по своей природе, и ни в коем случае нельзя ее рассматривать как эмергентный или вторичный феномен, остаточный по отношению к каким-то иным, более «солидным» физическим процессам. Гравитация описывается самой структурой пространства-времени, которое считалось прежде просто неподвижным фоном, этакой ареной для проявления всевозможной физической активности. В ньютоновской вселенной гравитация не являлась чем-то особенным — хотя и послужила парадигмой для построения всех более поздних физических теорий. Во вселенной же, описываемой Эйнштейном, гравитация рассматривается (и надо сказать, что эта точка зрения, разделяемая большинством нынешних физиков, получила великолепное экспериментальное подтверждение) как совершенно особое взаимодействие — не эмергентный феномен, но нечто само по себе уникальное.
Впрочем, несмотря на все отличия, между гравитацией и прочими физическими силами существует фундаментальная и гармоничная связь. Теория Эйнштейна отнюдь не является чужеродным элементом в системе физических законов, она лишь представляет их в несколько ином свете. (В особенности это относится к законам сохранения энергии, импульса и момента импульса.) Связь эйнштейновской гравитации со всей остальной физикой может до некоторой степени объяснить сложившуюся парадоксальную ситуацию, когда всякое физическое описание основывается на парадигменьютоновской гравитации, в то время как сама гравитация (как позднее показал Эйнштейн) по своей природе отличнаот прочих физических взаимодействий. Тот же Эйнштейн, кстати, призывал более всего избегать излишней самоуверенности — то, что мы в процессе познания мира взобрались на очередную ступеньку, вовсе не обязательно должно означать, что теперь мы располагаем единственно верной физической теорией этого самого мира.
Можно ли ожидать, что и в отношении феномена сознания нам предстоит обнаружить некое «взаимодействие», аналогичное гравитации? Если да, то характеристикой, которая по достижении определенного значения обусловливает проявление упомянутого феномена, окажется, скорее всего, не масса— во всяком случае, не одна лишьмасса, — но некая разновидность тонкой физической организации. Согласно представленным в первой части доводам, такая организация в процессе своего становления должна была так или иначе научиться использовать некий не известный нам пока ингредиент, непременно присутствующий в поведении обычной материи. То, что мы не наблюдаем его проявлений, означает лишь, что мы не туда смотрим, — аналогичным образом, нам никогда не удалось бы обнаружить феномен наклона световых конусов, ограничь мы область наблюдений одними лишь крохотными частицами.
Какое же отношение имеет наклон световых конусов к невычислимости? К этому вопросу (точнее, к одному весьма интригующему его аспекту) мы еще вернемся в §7.10 ; на данном же этапе наших рассуждений ответ прост: абсолютно никакого, разве чтодает некую надежду — как выясняется, вполне возможно обнаружить в физике фундаментально важное новое свойство, полностью отличное от всех уже известных и остававшееся прежде незамеченным в поведении обычной материи. Эйнштейна к его революционным идеям привел целый ряд весьма мощных соображений — математически сложных и физически неочевидных, — причем самое важное из них, широко известное еще со времен Галилея, так и оставалось до конца не понятым (речь идет о принципе эквивалентности: все тела в поле тяготения падают с одинаковой скоростью). Более того, необходимое условие успеха идей Эйнштейна заключалось именно в том, что эти самые идеи оказались полностью «совместимыми» со всем тем, что было известно о физических феноменах в его время.
Аналогичным образом вполне можно предположить, что где-то в поведении всем известных объектов сокрыта невычислительная активность того или иного рода. Для того, чтобы подобные спекуляции имели бы хоть какую-то надежду на успех, они также должны быть основаны на каких-то мощных соображениях — предположительно, иматематически сложных, ифизически неочевидных — и как-то согласовываться с тем, что мы знаем о всех известных нам феноменах. Посмотрим, насколько далеко нам удастся зайти по пути к такой теории.