Чтение онлайн

ЖАНРЫ

Тени разума. В поисках науки о сознании
Шрифт:

Следует упомянуть и об одном важном свойстве шрёдингеровой эволюции U: эволюция совокупной системы | | (где | и | никак друг с другом не взаимодействуют) есть не что иное, как совокупность эволюции индивидуальных систем. Так, если по истечении некоторого времени tсистема | эволюционирует (индивидуально) в систему | ', а система | эволюционирует (индивидуально) в систему | ', то совокупная система | | за то же время tэволюционирует в систему | '| '. Аналогично, если у нас имеется три невзаимодействующих компонента | , | и | , эволюционирующих, соответственно, в | ', | ' и | ' то совокупная система | | | посредством той же эволюции переходит в состояние | '| '| '. То же верно для четырех и более компонент.

Отметим, что свойство это очень похоже на свойство линейностиэволюции U(см. §5.7 ), согласно которому результат эволюции суперпозиции состояний в точности совпадает с суперпозицией результатов эволюции отдельных состояний. Состояние | + | , например, эволюционируете | ' + | '. Тем не менее, речь в обоих случаях идет о совершенно разныхвещах, и очень важно об этой разнице не забывать. Нет ничего удивительного

в том, что система, составленная из невзаимодействующих независимых компонентов, эволюционирует — как целое — так, словно ни один из ее отдельных компонентов понятия не имеет о присутствии в системе остальных. Независимость компонентов (т.е. полное отсутствие каких бы то ни было взаимодействий между ними) в данном случае — существенное условие, иначе свойство не «работает». Свойство линейности же оказывается поистине неожиданным. Получается, что под действием Uсистемы-суперпозиции состояний эволюционируют как набор отдельных, полностью изолированных друг от друга состояний независимоот того, изолированы эти состояния в действительности или между ними существуют какие-то взаимодействия. Одного этого достаточно, чтобы усомниться в абсолютной справедливости свойства линейности. И все же эволюция Uлинейна (и тому есть многочисленные подтверждения), но лишь в отношении феноменов, целиком и полностью ограниченных квантовым уровнем. Нарушение же линейности происходит, по всей видимости, исключительно под действием процедуры R. К этому вопросу мы еще вернемся.

5.16. Ортогональность произведений состояний

С ортогональностью произведений состояний (в том виде, в каком я определил эти произведения выше) дела обстоят не так просто, как хотелось бы. Допустим, у нас имеется два ортогональных состояния| и | ; тогда мы вправе ожидать, что состояния | | и | | также будут ортогональными, причем при любом | . Пусть, например, | и | — возможные альтернативные состояния фотона, где | — состояние фотона, зарегистрированного неким фотоэлементом, а ортогональное | состояние | — предполагаемоесостояние фотона в случае, когда фотоэлемент не регистрирует ничего (нулевое измерение). Можно представить себе, что наш фотон является компонентом некоей совокупной системы — просто добавим к нему еще какой-нибудь объект (например, другой фотон, скажем, где-нибудь на Луне) и обозначим состояние этого другого объекта через | . Таким образом, для нашей совокупной системы возможны два альтернативных состояния — | | и | | . Простое добавление состояния | в имеющееся описание не должно, разумеется, оказать никакого влияния на ортогональность двух первоначальных состояний. В самом деле, если говорить об определении произведения состояний в терминах обычного «тензорного произведения» (или необычного — в данном случае, грассманова произведения, а точнее, некоторой его модификации, используемой в наших рассуждениях), то так оно и есть, и из ортогональности состояний | и | действительно следует ортогональность | | и | | .

Как бы то ни было, пути, которыми, похоже (согласно

последним данным квантовой теории), предпочитает следовать Вселенная, далеко не столь прямолинейны. Если бы состояние | можно было счесть полностью независимым и от | , и от | , то тогда его присутствие и в самом деле ничего бы не меняло. Однако формально полной независимости здесь быть не может, и состояние даже пребывающего на Луне фотона оказывает самое непосредственное воздействие на состояние фотона, регистрируемого нашим фотоэлементом [40] . (С этими формальностями связано, в частности, то, что под обозначением «| | » мы подразумеваем произведение грассманова типа — если использовать более привычные термины, то речь тут идет о так называемой «статистике Бозе» (описание состояний фотонов и прочих бозонов) или о «статистике Ферми» (описание состояний фермионов — электронов, протонов и т.д.), см. НРК, с. 277, 278 и, скажем, [94].) Если бы перед нами стояла задача получить абсолютно точный с точки зрения теории результат, то рассмотрение состояния одного-единственного фотона потребовало бы учета состояний всех фотонов во Вселенной. Впрочем, необходимости в этом (к счастью) нет — и без такого учета точность получаемых результатов хоть и не абсолютна, но все же чрезвычайно высока. Если состояния | и | ортогональны, то можно с очень высокой степенью точности предположить, что ортогональными будут и состояния | | и | | (даже если это произведения грассманова типа), где | — любое состояние, не имеющее очевидного отношения к рассматриваемой задаче (каковая задача непосредственно касается лишь ортогональных состояний | и | ). Так и предположим.

40

Любопытно, что такого рода феномены находят недвусмысленное подтверждение в реальных физических наблюдениях. Описанный Хэнбери Брауном и Твиссом [ 187, 188] эффект, в соответствии с которым были измерены диаметры некоторых близлежащих звезд, основывается как раз на таком «бозонном» свойстве взаимодействия достигающих Земли фотонов, испущенных с противоположных краев звезды.

5.17. Квантовая сцепленность

Для того чтобы двигаться дальше, нам не обойтись без понимания квантовой физики ЭПР-эффектов— квантовомеханических Z– загадок, ярким представителем которых является представленная мною выше задача о магических додекаэдрах (см. §§5.3 , 5.4 ). Кроме того, мы должны как-то разобраться с главной X– загадкой квантовой теории — парадоксальной взаимозависимостью между процессами эволюции Uи редукции R, загадкой, порождающей проблему измерения, о которой мы поговорим в следующей главе. Следовательно, настала пора ввести очередную фундаментальную квантовую идею — понятие о сцепленных состояниях.

Начнем с того, что попытаемся выяснить, что включает в себя простой процесс измерения. Рассмотрим следующую ситуацию: фотон находится в суперпозиции, скажем, | + | , где в состоянии | фотон активирует детектор, в состоянии же | , ортогональном | , фотон никакого

воздействия на детектор не оказывает. (Похожий пример рассматривался в §5.8 , когда на детектор, расположенный в точке G, падал фотон, пребывающий в состоянии —| Fi| G. В состоянии | G фотон активировал детектор, в состоянии | F никакого воздействия на детектор не происходило.) Предположим далее, что детектору тоже можно сопоставить некое квантовое состояние, скажем, | . Вообще говоря, в квантовой теории это обычная практика. Лично мне не совсем ясно, какой может быть смысл в придании квантовомеханического описания объекту классического уровня, однако в дискуссиях на эту тему подобные вопросы, как правило, никого не занимают. Как бы то ни было, мы, думаю, можем согласиться с тем, что те элементы детектора, с которыми фотон сталкивается прежде всего, и в самом деле допускают рассмотрение согласно стандартным правилам квантовой теории. Поэтому, если у вас возникают какие-либо сомнения относительно правомерности применения этих правил ко всему детектору (как к целому), вы можете считать, что вектор состояния | описывает поведение именно совокупности элементов квантового уровня (частиц, атомов, молекул), что принимают на себя, так сказать, первый удар.

В момент, непосредственно предшествующий столкновению фотона (или, точнее, | -части волновой функции фотона) с детектором, физическое состояние системы объединяет в себе состояние детектора и состояние фотона, т.е. имеет вид |Ф)(| + | ), а нам известно, что

| (| + | ) = | | + | | .

Таким образом, мы имеем дело с суперпозицией состояния | | , описывающего детектор (элементы детектора) и приближающийся к нему фотон, и состояния | | , описывающего детектор (элементы детектора) и фотон, находящийся где-то в другом месте. Предположим далее, что состояние | | (детектор с приближающимся к нему фотоном) переходит, согласно шрёдингеровой эволюции U, в некоторое новое состояние | Д (детектор регистрирует результат ДА) — в силу возникающих при столкновении взаимодействий между фотоном и элементами детектора. Предположим также, что если фотон с детектором несталкивается, то под действием Uсостояние детектора | эволюционирует (индивидуально) в состояние | Н (детектор регистрирует НЕТ), а состояние | — в состояние | '. Тогда, согласно свойствам шрёдингеровой эволюции, рассмотренным в предыдущем параграфе, общее состояние системы принимает вид

| Д + | Н| '.

Перед нами типичный пример сцепленногосостояния: термин «сцепленность» в данном случае отражает тот факт, что общее состояние системы невозможно записать просто в виде произведениясостояния одной из ее подсистем (фотона) на состояние другой подсистемы (детектора). Более того, состояние | Д и само, по всей вероятности, является сцепленным (по меньшей мере, с состояниями элементов собственного окружения), однако подтверждение этой сцепленности требует детального исследования соответствующих взаимодействий, не имеющих к теме нашего разговора никакого отношения.

Отметим, что состояния | | и | | , суперпозицией которых представлено состояние совокупной системы непосредственно перед столкновением, (существенно) ортогональны— поскольку ортогональны состояния | и | , а | никак не зависит ни от того, ни от другого. Таким образом, ортогональными должны быть и состояния, в которые они эволюционируют под действием U, — | Д и | Н| '. (Эволюция Uвсегда сохраняет ортогональность.) Состояние | Д может в дальнейшем эволюционировать в нечто, наблюдаемое на макроскопическом уровне, — например, в слышимый человеческим ухом щелчок, указывающий на то, что фотон действительно был зарегистрирован. Если же никакого щелчка мы не услышали, то это надо понимать так, что система находится в ортогональном альтернативном состоянии | Н| ' (или только что в него «перескочила»). Одна лишь контрфактуальная возможность — щелчок могпрозвучать, но не прозвучал — вызывает «скачок» состояния из суперпозиции в состояние | Н| ', причем новое состояние уже не является сцепленным. Его расцепило нулевое измерение.

Характерной особенностью сцепленных состояний является то, что «скачок», сопровождающий процедуру R, может в данном случае иметь, на первый взгляд, нелокальное (или даже явно ретроактивное) действие, еще более удивительное, чем результат простого нулевого измерения. Такая нелокальность, в частности, имеет место в так называемых ЭПР-эффектах (или феноменах Эйнштейна—Подольского—Розена). Эти эффекты — подлинные квантовые чудеса — можно отнести к наиболее непостижимым Z– загадкам квантовой теории. Идею подобного парадокса первоначально выдвинул Эйнштейн, желая показать, что формализм квантовой теории не в состоянии дать исчерпывающее описание Вселенной. Впоследствии было предложено множество различных вариантов ЭПР-феноменов (например, магические додекаэдры из §5.3 ), причем некоторые из них получили прямое экспериментальное подтверждение, т.е. оказались неотъемлемой частью действительногоустройства мира, в котором мы живем (см. §5.4 ).

ЭПР-эффекты возникают в следующего рода ситуациях. Рассмотрим известное начальное состояние | физической системы, которое эволюционирует (согласно U) в суперпозицию двух ортогональных состояний, каждое из которых представляет собой произведение двух независимых состояний, описывающих два пространственно разделенных физических компонента системы — т.е. | эволюционирует, скажем, в сцепленное состояние

| | + | | .

Поделиться с друзьями: