Чтение онлайн

ЖАНРЫ

Теория всего (Происхождение и судьба Вселенной)
Шрифт:

Приступив в 1920-х гг. к исследованию спектров звёзд в других галактиках, астрономы обнаружили поразительный факт: в них отсутствовал тот же самый набор цветовых линий, что и у звёзд нашей Галактики, но все линии были смещены на одинаковую величину в направлении красной части спектра. Единственное разумное объяснение заключалось в том, что галактики удаляются от нас и это вызывает понижение частоты световых волн (так называемое красное смещение) вследствие эффекта Доплера. Прислушайтесь к шуму машин на шоссе. По мере того как автомобиль приближается к вам, звук его двигателя становится выше сообразно частоте звуковых волн и делается ниже, когда машина удаляется. То же происходит и со световыми или радиоволнами. Действительно, эффектом Доплера пользуется дорожная полиция, определяя скорость автомобиля по изменению частоты посылаемого и принимаемого радиосигнала (сдвиг частоты при этом

зависит от скорости отражающего объекта, то есть автомобиля).

После того как Хаббл открыл существование других галактик, он занялся составлением каталога расстояний до них и наблюдениями их спектров. В то время многие полагали, что галактики двигаются совершенно хаотически и, следовательно, в одинаковом количестве их должны обнаруживаться спектры, имеющие как красное смещение, так и синее. Каково же было общее удивление, когда обнаружилось, что все галактики демонстрируют красное смещение. Каждая из них удаляется от нас. Ещё более поразительными оказались результаты, опубликованные Хабблом в 1929 г.: даже величина красного смещения у каждой из галактик не случайна, но пропорциональна расстоянию между галактикой и Солнечной системой. Другими словами, чем дальше от нас галактика, тем быстрее она удаляется. Это означало, что Вселенная никак не может быть стационарной, как принято было думать ранее, на деле она расширяется. Расстояния между галактиками постоянно растут.

Открытие того, что Вселенная расширяется, стало одной из главных интеллектуальных революций XX в. Оглядываясь в прошлое, легко удивляться, почему никто не додумался до этого раньше. Ньютону и прочим следовало бы понять, что стационарная Вселенная быстро схлопнулась бы под влиянием тяготения. Но представьте, что Вселенная не стационарна, а расширяется. При малых скоростях расширения сила тяготения рано или поздно остановила бы его и положила начало сжатию. Однако если бы скорость расширения превосходила некоторое критическое значение, то силы тяготения было бы недостаточно, чтобы его остановить и Вселенная расширялась бы вечно. Нечто подобное происходит при запуске ракеты с поверхности Земли. Если ракета не разовьёт нужной скорости, сила тяготения остановит её и она начнёт падать назад. С другой стороны, при скорости выше некоторой критической величины (около 11,2 км/с) силы тяготения не смогут удерживать ракету возле Земли, и она будет вечно удаляться от нашей планеты.

Подобное поведение Вселенной можно было предсказать на основе ньютоновского закона всемирного тяготения ещё в XIX в., и в XVIII в., даже в конце XVII в. Однако вера в стационарную Вселенную была столь незыблема, что продержалась до начала XX столетия. Сам Эйнштейн в 1915 г., когда он сформулировал общую теорию относительности, сохранял убеждённость в стационарности Вселенной. Не в силах расстаться с этой идеей, он даже модифицировал свою теорию, введя в уравнения так называемую космологическую постоянную. Эта величина характеризовала некую силу антигравитации, в отличие от всех других физических сил не исходящую из конкретного источника, а «встроенную» в саму ткань пространства-времени. Космологическая постоянная придавала пространству-времени внутренне присущую тенденцию к расширению, и это могло быть сделано для уравновешивания взаимного притяжения всей присутствующей во Вселенной материи, то есть ради стационарности Вселенной.

Похоже, в те годы лишь один человек готов был принять общую теорию относительности за чистую монету. Пока Эйнштейн и другие физики искали путь, позволяющий обойти нестационарность Вселенной, которая вытекала из общей теории относительности, российский физик Александр Фридман вместо этого предложил своё объяснение.

Модели Фридмана

Уравнения общей теории относительности, описывающие эволюцию Вселенной, слишком сложны, чтобы решить их в деталях. А потому Фридман предложил вместо этого принять два простых допущения: (1) Вселенная выглядит совершенно одинаково во всех направлениях; (2) это условие справедливо для всех её точек. На основе общей теории относительности и этих двух простых предположений Фридману удалось показать, что мы не должны ожидать от Вселенной стационарности. На самом деле он в 1922 г. точно предсказал то, что Эдвин Хаббл открыл несколько лет спустя.

Предположение о том, что Вселенная выглядит одинаковой во всех направлениях, конечно же, не совсем отвечает реальности. Например, звёзды нашей Галактики составляют на ночном небе отчётливо видимую светящуюся полосу, называемую Млечным Путём. Но если мы обратим свой взгляд на далёкие галактики, число их, наблюдаемое в разных направлениях, окажется примерно одинаковым.

Так что Вселенная, похоже, сравнительно однородна во всех направлениях, если рассматривать её в космических масштабах, сопоставимых с расстояниями между галактиками.

Долгое время это считалось достаточным обоснованием предположения Фридмана — грубым приближением к реальной Вселенной. Однако сравнительно недавно счастливый случай доказал, что предположение Фридмана описывает наш мир с замечательной точностью. В 1965 г. американские физики Арно Пензиас и Роберт Уилсон работали в лаборатории фирмы «Белл» в штате Нью-Джерси над сверхчувствительным приёмником микроволнового излучения для связи с орбитальными искусственными спутниками. Их сильно беспокоило, что приёмник улавливает больше шума, чем следовало бы, и что шум этот не исходит из какого-либо определённого направления. Поиск причины шума они начали с того, что очистили свою большую рупорную антенну от скопившегося внутри неё птичьего помёта и исключили возможные неисправности. Им было известно, что любой шум атмосферного происхождения усиливается, когда антенна направлена не строго вертикально вверх, потому что атмосфера выглядит толще, если смотреть под углом к вертикали.

Дополнительный шум оставался одинаковым независимо от того, в каком направлении поворачивали антенну, а потому источник шума должен был находиться за пределами атмосферы. Шум оставался неизменным и днём и ночью на протяжении всего года, несмотря на вращение Земли вокруг её оси и обращение вокруг Солнца. Это указывало, что источник излучения находится за пределами Солнечной системы и даже вне нашей Галактики, иначе интенсивность сигнала менялась бы по мере того, как в соответствии с движением Земли антенна оказывалась обращённой в разных направлениях.

Действительно, мы теперь знаем, что излучение по пути к нам должно было пересечь всю обозримую Вселенную. Коль скоро оно одинаково в разных направлениях, то и Вселенная должна быть однородна во всех направлениях (по крайней мере, в больших масштабах). Нам известно, что в каком бы направлении мы ни обратили свой взгляд, колебания «фонового шума» космического излучения не превышают 1/10000. Так что Пензиас и Уилсон случайно натолкнулись на поразительно точное подтверждение первого предположения Фридмана.

Примерно в то же время два других американских физика из расположенного неподалёку, в том же штате Нью-Джерси, Принстонского университета, Боб Дик и Джим Пиблс, тоже заинтересовались космическим микроволновым излучением. Они работали над гипотезой Джорджа (Георгия) Гамова, который некогда был студентом Александра Фридмана, о том, что на самой ранней стадии развития Вселенная была исключительно плотной и горячей, нагретой до «белого каления». Дик и Пиблс пришли к выводу, что мы всё ещё можем наблюдать её прошлое свечение, поскольку свет из самых далёких частей ранней Вселенной только-только достигает Земли. Однако вследствие расширения Вселенной этот свет, по-видимому, претерпел столь большое красное смещение, что теперь должен восприниматься нами в виде микроволнового излучения. Дик и Пиблс как раз вели поиски такого излучения, когда Пензиас и Уилсон, прослышав об их работе, поняли, что уже нашли искомое. За это открытие Пензиас и Уилсон были удостоены Нобелевской премии по физике 1978 г., что кажется несколько несправедливым по отношению к Дику и Пиблсу.

На первый взгляд, эти доказательства того, что Вселенная выглядит одинаково во всех направлениях, заставляют предположить, что Земля занимает какое-то особое место во Вселенной. Например, можно вообразить, что, коль скоро все галактики удаляются от нас, мы находимся в самом центре космоса. Имеется, однако, альтернативное объяснение: Вселенная может выглядеть одинаково во всех направлениях и из любой другой галактики. Таково, как уже упоминалось, было второе предположение Фридмана.

У нас нет никаких доказательств, подтверждающих или опровергающих это предположение. Мы принимаем его на веру лишь из скромности. Было бы в высшей степени удивительно, если бы Вселенная выглядела одинаковой во всех направлениях вокруг нас, но не вокруг любой другой точки. В модели Фридмана все галактики удаляются друг от друга. Представьте воздушный шарик, на поверхности которого нарисованы пятнышки. При надувании шарика расстояние между любыми двумя пятнышками увеличивается, однако ни одно из них нельзя называть центром расширения. Более того, чем дальше расходятся пятнышки, тем быстрее они удаляются друг от друга. Сходным образом в модели Фридмана скорость разбегания любых двух галактик пропорциональна расстоянию между ними. Отсюда следует, что величина красного смещения галактик должна быть прямо пропорциональна их удалённости от Земли, что и обнаружил Хаббл.

Поделиться с друзьями: