Чтение онлайн

ЖАНРЫ

Термодинамика реальных процессов
Шрифт:

Благодаря отмеченным и некоторым другим различиям мы вынуждены рассматривать соответственно, два самостоятельных начала - третье и пятое, причем ведущая роль принадлежит третьему, ибо оно определяет главные количественные и качественные признаки системы (количество вещества, пошедшего на ее образование, структуру этого вещества и т.д.), то есть характеризует состояние системы. На долю пятого начала ложится обязанность обеспечивать условия, необходимые и достаточные для изменения этого состояния.

Сходство уравнений (90) и (176) в столь различных физических ситуациях лишний раз подтверждает справедливость прежнего вывода, содержащегося в параграфе 5 гл. X, о том, что для взаимодействия порций веществ (ансамблей, тел) важны не силы и перемещения, а работы и энергии, со всеми вытекающими отсюда последствиями. Другими словами, не только четвертое, но и шестое начало ОТ не запрещает нарушать третий закон механики Ньютона. Шестое начало в

этом смысле не отличается от четвертого, поэтому его, как и четвертое, вполне можно назвать (вторым) обобщенным законом взаимодействия, или обобщенным третьим законом Ньютона. В частном случае из обобщенного закона вытекает собственно третий закон Ньютона, согласно которому сила действия по абсолютной величине равна силе противодействия.

Интересно, что оставшиеся четыре дифференциальных тождества термодинамики (193), (204), (212) и (219) тоже приводят к соотношениям, аналогичным (90) и (176). Это должно свидетельствовать о справедливости обобщенного закона взаимодействия, или обобщенного третьего закона Ньютона, для самых различных условий сопряжения системы и окружающей среды.

В связи с изложенным хочется обратить внимание на ту глубокую связь, которая существует между различными явлениями природы и описывающими эти явления законами. Например, мы установили, что состояние и перенос, симметрия мира, эффекты взаимности и увлечения, новый обобщенный закон взаимодействия, третий закон механики Ньютона и т.д.
– все это различные стороны проявления одних и тех же закономерностей, содержащихся в началах ОТ. При этом полезно не забывать, что мы делаем еще только первые шаги на неизведанном пока пути, в дальнейшем будут обнаружены неизмеримо более удивительные связи, обусловленные единством окружающего нас мира и управляющих этим миром законов.

В заключение по поводу рассмотренных выше уравнений переноса требуется сделать те же замечания, которые были сделаны в конце гл. X применительно к уравнениям состояния. Все дифференциальные уравнения переноса являются существенно нелинейными из-за тех связей, которые имеются между свойствами АР , КР , ВР , СР , DP и т.д. и экстенсорами, интен-сиалами и их производными различных порядков. В этом нетрудно убедиться, если подставить значения всех этих свойств в уравнения переноса. При этом достаточно рассмотреть только обобщенное дифференциальное уравнение (100), из которого вытекают все частные. Следовательно, частные уравнения обладают теми же свойствами нелинейности.

Сказанное справедливо не только для уравнений переноса, но и для всех цепочек законов симметрии, а также для всех остальных законов симметрии, которые могут быть получены помимо характеристических функций путем задания особых условий взаимодействия системы и окружающей среды.

Фактическая нелинейность дифференциальных уравнений состояния, переноса и симметрии свидетельствует о большой гибкости и универсальности аппарата ОТ. Симметричная (линейная) форма записи уравнений делает результаты легко обозримыми и удобными для применения и анализа. Уравнения становятся действительно линейными в отдельных частных случаях, например когда свойства А и К оказываются величинами постоянными. Этот простейший частный случай представляет большой теоретический и практический интерес; соответствующую ему систему мы условились именовать идеальной (см. параграф 7 гл. X) [ТРП, стр.181-184].

Глава ХIII. Седьмое начало ОТ.

1. Совместное применение первых двух начал

к процессам изменения состояния.

Теперь настало время окинуть взглядом пройденный путь. Всего было сформулировано шесть начал. Первое из них, непосредственно диктуемое основным уравнением ОТ, утверждает факт сохраняемости энергии в процессах эволюционного развития вещества и его поведения, в том числе в процессах синтеза и распада ансамблей; уравнение первого начала дает конкретное числовое выражение для изменения энергии системы, находящейся во взаимодействии с окружающей средой. Второе начало, вытекающее из первого, говорит о сохраняемости количества вещества во всех этих процессах. Оба начала характеризуют наиболее общие и важные свойства Вселенной.

Третье и четвертое начала выражают правила, которыми регламентируется поведение системы, ее состояние; эти правила связывают между собой изменения экстенсоров с изменениями интенсиалов. Наконец, пятое и шестое начала определяют условия и количественную сторону процесса проникновения и распространения вещества в системе, эти процессы проникновения и распространения служат причиной изменения состояния последней. В ходе формулировки начал удалось выявить очень многие чрезвычайно интересные подробности физического механизма взаимодействия системы и окружающей среды, а также механизма формирования простого ансамбля, при этом раскрылась удивительная по своему калейдоскопическому разнообразию картина формирования симметричных и асимметричных структур.

Однако нарисованную к данному моменту картину еще нельзя считать завершенной до тех пор, пока мы не попытались замкнуть круг, то есть согласовать между собой все перечисленные начала. При этом не исключена возможность выявления некоторых новых, не учтенных пока специфических особенностей протекания упомянутых выше процессов синтеза и распада ансамблей. Вспомним, например, что второе начало обязано своим происхождением именно взаимной увязке первого начала с выявившимся в ходе анализа последнего общим физическим механизмом переноса вещества через контрольную поверхность системы. Теперь нам предстоит увязать первое и второе начала с тем же физическим механизмом, но уже детализированным с помощью третьего и четвертого, а также пятого и шестого начал. В результате будет выведено седьмое начало ОТ, оно замкнет круг главных законов, которым обязана подчиняться природа на уровне простых и более сложных явлений. Седьмое начало в каком-то смысле повторяет первое, с той только разницей, что первое начало определяет энергию через внешние по отношению к системе факторы, а седьмое определяет ту же энергию через параметры самой системы, но при этом появится много существенно нового.

Очевидно, что задачу придется решать в два этапа. Сперва согласуем первые два начала с процессами изменения состояния, а затем и с процессами переноса. При решении поставленной задачи будут получены важные результаты. В частности, будет дана дальнейшая расшифровка физического механизма процессов изменения состояния и переноса и будут установлены дополнительные принципиальные различия между этими двумя типами процессов. Кроме того, будут обнаружены весьма любопытные свойства у термического вещества, уточнено понятие энергии связи и т.д.

Взаимную припасовку первых четырех главных законов ОТ для простоты начнем с вывода соответствующего дифференциального уравнения в предположении, что система располагает всего одной степенью свободы (n = 1). Рассматривается процесс изменения состояния системы (ансамбля), к которой подводится вещество в количестве dE . Этот процесс будем именовать заряжанием системы соответствующим веществом.

Согласно третьему началу ОТ, подвод к ансамблю вещества dE сопровождается повышением интенсиала на величину dP , а отвод - снижением; в первом случае приращение dP положительно, во втором отрицательно, причем величина приращения dP = P" - Р' , где ?' - начальное значение интенсиала; Р" - его конечное значение.

Подвод и отвод вещества связаны с совершением работы, равной произведению интенсиала на экстенсор (см. уравнение (42)). Если процесс протекает при интенсиале ансамбля Р' , то работа dQ' = P'dE , если при интенсиале Р" , то работа dQ" = P"dE .

Согласно первому началу ОТ, изменение энергии в процессе заряжания системы от интенсиала Р' до интенсиала Р"

dU3 = dQ" – dQ' = dQ3 = ? dPdE (220)

 где

dQ3 = dQ" – dQ'

Знак в правой части этого уравнения выбирается в зависимости от конкретных условий процесса: знака совершаемой работы, знака вещества, если оно имеет своего антипода, как, например, электрический заряд, и т.д.

Приращения dP и dE связаны между собой уравнением состояния (58) или (60) третьего начала ОТ. Поэтому равенство (220) можно также переписать в виде

dU3 = dQ3 = ? dPdE = ? АdE2 = ? КdР2 (221)

Если система располагает n степенями свободы, то расчетные формулы можно получить с помощью уравнений типа (31) и (53). Первое из этих уравнений говорит о том, что работы, совершаемые различными веществами, подчиняются простейшему правилу аддитивности: они суммируются алгебраически с учетом приписываемых им знаков. Второе уравнение заставляет учитывать взаимное влияние степеней свободы, когда помимо данного изменяются также все остальные интенсиалы и при этом совершаются сопряженные с ними работы. Все эти остальные работы не сопровождаются (не обусловлены) подводом или отводом соответствующих веществ. Это исключительно интересный процесс, который можно понять, только обратившись к эффекту экранирования, изложенному ниже в настоящей главе. Он таит в себе возможность взаимных преобразований различных форм энергии внутри отдельного тела [ТРП, стр.185-187].

Поделиться с друзьями: