Том13. Абсолютная точность и другие иллюзии. Секреты статистики
Шрифт:
Например, изменение значений экономического показателя за последние шесть месяцев можно представить графиком, изображенным слева, на котором показан впечатляющий рост, или графиком, изображенным справа, из которого следует, что значение показателя практически не изменилось. Различие между этими графиками заключается в выборе масштаба вертикальной оси.
Одни и те же изменения в разных масштабах.
Изменение масштаба горизонтальной оси также может преподнести немало сюрпризов. На следующем рисунке представлен график изменения объемов продаж за последние четыре года, построенный в мае 2010 года, когда были доступны данные лишь по апрель 2010 года. Это указано в подписи к графику, но создается впечатление, что объем продаж резко упал. В действительности
Четыре значения несравнимы между собой: за 2010 год доступны данные только до апреля включительно.
* * *
КАТАСТРОФА «ЧЕЛЛЕНДЖЕРА»
Все мы хотя бы раз видели фотографию космического челнока «Челленджер» на стартовой площадке: шаттл, похожий на самолет, вертикально закреплен на огромном топливном баке, полном горючего, по бокам которого находятся ракетные ускорители, выводящие челнок на орбиту. Эти ускорители, как и другие элементы челнока, невозможно перевозить в собранном виде, поэтому они изготавливаются и доставляются по частям, а сборка происходит на космодроме. Чтобы обеспечить отсутствие утечек в местах стыков и предупредить катастрофу, используются круглые уплотнительные кольца из каучука толщиной 6 мм и диаметром 12 м.
В ночь с 27 на 28 января 1986 года группа техников и руководители завода, производившего ракетные ускорители, провели телеконференцию с коллегами из NASA, чтобы обсудить возможность переноса запуска челнока на следующий день. Их беспокоило, что, по прогнозу, температура воздуха в день запуска должна была быть существенно ниже обычной — от 26 до 29 °F (от -2 до -3 °C). Они боялись, что при таких температурах уплотнительные кольца не обеспечат полную герметичность. Имелись данные с прошлых запусков, так как обломки двигателей после каждого запуска собирались и тщательно анализировались. В одном случае были зафиксированы дефекты уплотнительных колец, но серьезных происшествий не было отмечено ни разу. После анализа данных члены рабочей группы сделали вывод, что доказательства того, что низкие температуры могут негативно отразиться на уплотнительных кольцах, отсутствуют. Было принято решение не переносить запуск.
Утром следующего дня спустя 59 секунд после запуска сквозь одно из колец, которое было не полностью герметичным, начало прорываться пламя. Огонь быстро достиг топливного бака, что привело к взрыву шаттла и гибели семерых астронавтов, находившихся на его борту. Катастрофа шокировала весь мир и привела к радикальным изменениям в космической программе NASA.
Президент Рональд Рейган создал комиссию по расследованию инцидента, куда вошли видные представители научного сообщества. Комиссия определила, что анализ имеющихся данных был недостаточным. Одной из ошибок стало то, что не были приняты во внимание данные о полетах, в которых кольца не были повреждены (рис. 1). Подробный анализ параметров уплотнительных колец во время всех запусков позволил бы увидеть взаимосвязь между отмеченными дефектами и температурой воздуха. На рис. 2 четко видно, что данные, соответствующие температуре в момент планируемого запуска «Челленджера», отсутствуют, следовательно, нельзя гарантировать отсутствие неполадок при этой температуре. Кроме того, можно увидеть, что при понижении температуры число неполадок возрастает. На рис. 3 число колец, на которых были обнаружены дефекты (вне зависимости от их серьезности), заменено оценкой, определенной комиссией по расследованию катастрофы. На этом рисунке связь видна еще более четко. Это наглядный пример того, как с помощью простого графического анализа данных можно получить много информации об анализируемой проблеме.
Рис. 1. Каждая точка обозначает запуск, во время которого были зафиксированы повреждения уплотнительных колец. На вертикальной оси отмечено число происшествий, на горизонтальной — температура во время запуска (в °F).
Рис. 2. На удлиненной горизонтальной оси отмечена прогнозная температура в момент запуска «Челленджера». На графике также содержатся точки, соответствующие запускам, во время которых не было отмечено неполадок уплотнительных колец.
Рис. 3. Для каждого запуска была произведена оценка повреждений уплотнительных колец. Она отложена вдоль вертикальной оси.
(источник: Эдвард Тафти. Visual Explanations).
* * *
Графическое представление данных также может выглядеть по-разному в зависимости от выбранной переменной. Например, если объемы продаж вашей компании падают, что показано на графике слева внизу, можно построить график объема продаж с нарастающим итогом (справа), который, очевидно, будет расти.
Два вида представления информации о продажах: ежемесячном объеме (слева) и объеме с нарастающим итогом (справа).
Не думайте, что графики — это нечто бесформенное и их можно изменять в зависимости от того, какую мысль мы хотим донести. Можно построить наглядные и очень полезные графики, которые помогут с первого взгляда получить всю необходимую информацию, как, например, гистограммы в задаче с пекарней. Графики могут быть запутанными или даже давать ошибочное представление об информации при некорректно выбранной переменной или масштабе. Как правило, внимательность, здравый смысл и немного опыта помогут вам избежать подобных неточностей.
Глава 2
Расчет вероятностей: правила, которые помогут нам в мире неопределенности
Расчет вероятностей вызывает большой интерес у тех, кто полагает, что с помощью науки можно найти стратегию выигрыша в казино, лотереях и различных азартных играх. Однако такие люди вскоре обнаруживают, что теория вероятностей им в этом не поможет. В действительности она играет на руку не игрокам, а создателям азартных игр.
Помимо азартных игр расчет вероятностей используется во множестве областей, начиная с медицины, где производится оценка вероятностей при планировании массовой вакцинации, до контроля качества промышленного производства, где порой требуется принять решение о качестве множества деталей на основании результатов испытаний лишь нескольких из них.
Математическая теория вероятностей появилась достаточно поздно, уже в XVII веке. Определение вероятности как отношения числа благоприятных исходов к общему числу возможных исходов, данное Лапласом, было сформулировано лишь в 1814 году, хотя Архимед открыл намного менее интуитивно понятную формулу объема сферы за 2000 лет до этого. Длительное время господствовала идея о том, что случайные события непредсказуемы, не подчиняются никаким законам и, следовательно, их анализ неподвластен человеку. Кроме того, считалось, что случайность лежит в области божественного и имеет магический смысл. Поэтому изучение случайных событий длительное время считалось опасным.
Одним из первых трудов, посвященных изучению законов теории вероятностей, считается работа Галилея, написанная примерно в 1620 году по заказу некоего аристократа. Он пытался определить наиболее вероятную сумму очков, выпадающую при броске трех игральных костей. Он считал, что чаще всего эта сумма оказывается равной 10 или И, но не был уверен в этом, поэтому решил попросить совета у одного из величайших мудрецов той эпохи.
Галилей написал четырехстраничную статью, где изложил свои выводы и размышления. Он рассуждал следующим образом.
1. Игральная кость имеет шесть граней. Руководствуясь соображениями симметрии, мы можем считать, что вероятность выпадения каждой грани одинакова. Следовательно, вероятность того, что выпадет конкретное число, равна 1 к 6.
2. Для каждого из 6 возможных результатов для первой игральной кости существует 6 возможных результатов для второй игральной кости. Всего возможно 36 результатов, приведенных в следующей таблице. Результат броска первой кости обозначен К1, результат броска второй кости — К2.
Все пары очков имеют одинаковую вероятность выпадения, но вероятность выпадения сумм очков различается. Лишь в одном случае из 36 сумма выпавших очков будет равна 2 (если выпадет 1 и 1), и также всего в одном случае сумма очков будет равна 12 (6 и 6). Однако сумма очков будет равна 7 в шести случаях из 36 (то есть в одном случае из 6). Этот результат наиболее вероятен.
Портрет Галилея кисти Тинторетто. Этот итальянский ученый выполнил одно из первых исследований по теории вероятностей.
3. Если мы бросаем не две, а три игральных кости, рассуждения проводятся аналогично. Для каждого из 36 возможных результатов броска двух костей существует 6 возможных исходов при броске третьей кости, поэтому общее число вариантов равно 6·6·6 = 216. На следующей диаграмме изображены частоты для каждого из возможных исходов. В самом деле вероятность выпадения 10 или 11 одинакова: 27/216 = 0,125, вероятность выпадения 9 или 12 несколько меньше: 25/216 = 0,116.
<