Трактат о вдохновенье, рождающем великие изобретения
Шрифт:
В XVII веке девятнадцатилетний француз Блез Паскаль придумал первый, еще очень неповоротливый и тугодумный «стальной мозг».
Это, может быть, слишком громко сказано. Паскаль придумал машину для сложения и вычитания, прообраз современного арифмометра.
Вот он стоит — арифмометр — под лобастой железной коробкой. Ее воспрещается открывать посторонним. Посторонние заблудятся в чаще осей, рычажков, пружин и зубчатых колес. Они сплетены друг с другом, как ветви дремучего леса. Нужно хорошо знать математику и механику, чтобы уяснить, как работает «стальной мозг».
Всем понятно, как механизируют
Не будем сами решать эту задачу, а поручим ее отделению артиллеристов. Как во всяком артиллерийском расчете, разобьем их по номерам и отдадим приказ по отделению:
первому номеру — складывать единицы;
второму номеру — складывать десятки;
третьему номеру — складывать сотни;
четвертому номеру—передавать от первого номера ко второму накопившиеся при сложении единиц десятки;
пятому номеру — передавать от второго номера к третьему накопившиеся при сложении десятков сотни.
Теперь обязанности артиллеристов настолько просты, что их легко механизировать.
Очень просто придумать механизм для сложения единиц. Возьмите обыкновенный наборный диск — вертушку от автоматического телефонного аппарата. Только пусть он будет без пружины и, доведенный до упора, не возвращается обратно. У дырок на диске напишем дополнительно десять цифр — от нуля до девяти. Рядом с диском прикрепим планку с окошком. Когда вертят диск, наши новые цифры одна за другой проходят мимо окошка. Вот вам и счетная машина для сложения единиц. Задавайте ей числа, и она вам будет считать.
Пусть нам нужно сложить 3 и 5. Будем действовать так, будто звоним по телефону № 3. Заведем палец в дырку перед цифрой 3 и прокрутим диск до упора. В окошке выскочит цифра 3. А теперь позвоним по телефону № 5. Снова прокрутим диск до упора и увидим в окошке цифру 8:
3 + 5 = 8.
В окошке получается результат. Такая же вертушка годится для сложения десятков и сотен. Значит, можно взять три такие вертушки и поставить их рядом. А чтобы знать, с чем имеем дело, внизу прикрепить вывески:
Сотни Десятки Единицы
И первым трем артиллеристам скомандовать: «Разойдись!» Они теперь не нужны.
Если складывать числа побольше, например 6 и 7, то в окошке появится 3, а не 13. Это значит, что при сложении накопился десяток и его надо передать в старший разряд. У нас за этим следит четвертый артиллерист. Как только диск единиц делает полный оборот, артиллерист прокручивает диск десятков на одну дырку, и цифра 1 появляется в соседнем окошке.
Перенос десятков тоже легко механизировать.
На одних осях с дисками сидят десятизубые колесики. Колесики сцеплены с десятичной передачей. Десятичная передача — это два колесика, сидящих на одной оси; одно из них десятизубое, другое однозубое. Когда диск единиц делает полный оборот, однозубое колесико поворачивает диск десятков на один зубец — диск десятков поворачивается на одну
цифру вперед. Точно так же устроена передача сотен, накопившихся от сложения десятков.Теперь можно отпустить и остальных артиллеристов. Машина сама будет складывать трехзначные числа.
Зададим только ей условия.
На трех вертушках — единиц, десятков и сотен, как на трех телефонных аппаратах, наберем тройку цифр первого слагаемого: 6, 5, 4. Они сейчас же появятся в окошках. Наберем теперь цифры второго слагаемого: 2, 8, 5, и в окошках появится результат — 939. Выходит, можно машиной решать математические задачи. Она решает простые задачи, но из простого составляется сложное.
Я рассказал о ней, чтобы вы поверили и прочувствовали, что можно построить и давно построены машины для решения умственных задач. Они их щелкают, как орехи.
Работу, происходящую в уме, разделили на отдельные стадии и тогда увидели, что много в них механического и что это механическое можно и впрямь механизировать. Удалось найти механическое даже в таких сугубо творческих делах, как перевод с языка на язык, игра в шахматы. Оказалось, что, разбив процесс на бесчисленное количество стадий, возможно построить машину-переводчика или машину-картежника или машину-шахматиста… Все это известные вещи.
Механизаторы приободрились… Угрожают поэтам, что построят машину, пишущую стихи, и пугают композиторов, что создадут механизм, сочиняющий музыку. Но, конечно, это только угрозы!
Начинает подвергаться анализу и творчество изобретателя.
На моей полке несколько книжек, посвященных творчеству изобретателя. Часть из них в потертых старых переплетах, часть в обложках, пахнущих свежей краской. В них исследователи стремятся разбить на стадии сложный ход изобретательского творчества. Они силятся «объять необъятное и уловить неуловимое, т. е. найти закономерность в процессе изобретения, который, по словам других знатоков, насмехается над всякой закономерностью». Поглядев на созидаемое изобретение, как на развивающийся организм, они спрашивают себя: нет ли в этом эмбриологическом процессе таких стадий, которые повторялись бы во всех изобретениях?
Самые различные авторы — философы, инженеры, психологи, изобретатели— приходят к выводу, что такие стадии есть, но по-разному определяют их и по-разному прочерчивают их границы.
Перебираю книжки одну за другой в порядке их издания.
Вот довольно старая книга Рибо «Творческое воображение», изданная еще в 1901 году. Он стремится доказать, что «созидающее воображение механика и художника по своей природе тождественны и отличаются друг от друга только своими целями, способами и условиями проявления».
«Подводя итог количеству воображения, затраченному и воплощенному, с одной стороны, в области художественного творчества, а с другой стороны, в технических и механических изобретениях, мы найдем, что второй итог значительно больше первого!» — восклицает Рибо.
Восклицание, конечно, очень лестное для нас, изобретателей. Но — увы! — стараясь выяснить, что сближает художника и изобретателя, Рибо не пытается исследовать самое важное практически — то, что их различает, то, что служит особенностью работы изобретателя. В этом слабость книги Рибо.