Чтение онлайн

ЖАНРЫ

UNIX: разработка сетевых приложений
Шрифт:
ПРИМЕЧАНИЕ

HP-UX обрабатывает поверочные сообщения так же, как и обычные данные, то есть второе сообщение отсылается по истечении периода повторной передачи, после чего для каждого последующего пакета интервал ожидания удваивается, пока не будет достигнут максимальный интервал (по умолчанию — 10 мин).

Если на все проверочные сообщения TCP не приходит ответа, то ошибка сокета, требующая обработки, устанавливается в

ETIMEDOUT
и сокет закрывается. Но если сокет получает ошибку ICMP (Internet Control Message Protocol — протокол управляющих сообщений Интернета) в ответ на одно из проверочных сообщений, то возвращается одна из соответствующих ошибок (см. табл. А.5 и А.6), но сокет также закрывается. Типичная ошибка ICMP в этом сценарии —
Host unreachable
(Узел недоступен) — указывает на то, что узел собеседника не вышел из строя, а только является недоступным. При этом ошибка, ожидающая обработки, устанавливается в
EHOSTUNREACH
.
Это может произойти из-за отказа сети или при выходе удаленного узла из строя и обнаружении этого последним маршрутизатором.

В главе 23 [111] и на с. 828-831 [128] содержатся дополнительные подробности об этом параметре.

Без сомнения, наиболее типичный вопрос, касающийся этого параметра, состоит в том, могут ли изменяться временные параметры (обычно нас интересует возможность сокращения двухчасовой задержки). В разделе 7.9 мы описываем новый параметр

TCP_KEEPALIVE
, но он не реализован достаточно широко. В приложении Е [111] обсуждается изменение временных параметров для различных ядер. Необходимо учитывать, что большинство ядер обрабатывают эти параметры глобально, и поэтому сокращение времени ожидания, например с 2 час до 15 мин, повлияет на все сокеты узла, для которых включен параметр
SO_KEEPALIVE
.

Назначение этого параметра — обнаружение сбоя на узлесобеседника. Если процесссобеседника выходит из строя, его TCP отправит через соединение сегмент FIN, который мы сможем легко обнаружить с помощью функции

select
(поэтому мы использовали функцию
select
в разделе 6.4). Также нужно понимать, что если на проверочное сообщение не приходит ответа (сценарий 3), то это не обязательно означает, что на узле сервера произошел сбой и существует вероятность, что TCP закроет действующее соединение. Если, например, промежуточный маршрутизатор вышел из строя на 15 мин, то эти 15 мин полностью перекрывают период отправки проверочных сообщений от нашего узла, равный 11 мин и 15 с. Поэтому правильнее было бы назвать эту функцию не проверкой жизнеспособности (keep-alive), а контрольным выстрелом (make-dead), поскольку она может завершать еще открытые соединения.

Этот параметр обычно используется серверами, хотя его могут использовать и клиенты. Серверы используют его, поскольку большую часть своего времени они проводят в блокированном состоянии, ожидая ввода по соединению TCP, то есть в ожидании запроса клиента. Но если узел клиента выходит из строя, процесс сервера никогда не узнает об этом и сервер будет продолжать ждать ввода данных, которые никогда не придут. Это называется наполовину открытым соединением( half-open connection). Данный параметр позволяет обнаружить наполовину открытые соединения и завершить их.

Некоторые серверы, особенно серверы FTP, предоставляют приложению тайм- аут, часто до нескольких минут. Это выполняется самим приложением, обычно при вызове функции

read
, когда считывается следующая команда клиента. Этот тайм-аут не связан с данным параметром сокета.

ПРИМЕЧАНИЕ

В SCTP имеется механизм проверки пульса (heartbeat), аналогичный механизму проверочных сообщений (keep-alive) TCP. Этот механизм настраивается при помощи элементов параметра сокета SCTP_SET_PEER_ADDR_PARAMS, который будет описан далее, а не при помощи параметра SO_KEEPALIVE. Последний полностью игнорируется сокетом SCTP и не мешает работе механизма проверки пульса.

В табл. 7.3 суммируются различные методы, применяемые для обнаружения того, что происходит на другом конце соединения TCP. Когда мы говорим «использование функции

select
для проверки готовности к чтению», мы имеем в виду вызов функции
select
для проверки, готов ли сокет для чтения.

Таблица 7.3. Методы определения различных условий TCP

Сценарий Процесс собеседника выходит из строя Узел собеседника выходит из строя Узел собеседника недоступен
Наш TCP активно посылает данные TCP собеседника посылает сегмент FIN, что мы можем сразу же обнаружить, используя функцию select для проверки готовности к чтению. Если TCP посылает второй сегмент, TCP собеседника посылает в ответ сегмент RST. Если TCP посылает еще один сегмент, наш TCP посылает сигнал SIGPIPE По истечении времени ожидания TCP возвращается ошибка ETIMEDOUT По истечении времени ожидания TCP возвращается ошибка ETIMEDOUT
Наш TCP активно принимает данные TCP собеседника посылает сегмент FIN, который мы прочитаем как признак конца файла (возможно, преждевременный) Мы больше не получаем никаких данных Мы больше не получаем никаких данных
Соединение неактивно, посылается пробный пакет TCP собеседника посылает сегмент FIN, который мы можем сразу же обнаружить, используя функцию select
для проверки готовности к чтению
По истечении двух часов отсутствия активности отсылается 9 сообщений для проверки наличия связи с собеседником, а затем возвращается ошибка ETIMEDOUT По истечении двух часов отсутствия активности отсылается 9 сообщений для проверки наличия связи с собеседником, а затем возвращается ошибка ETIMEDOUT
Соединение неактивно, не посылается проверочное сообщение TCP собеседника посылает сегмент FIN, который мы можем сразу же обнаружить, используя функцию select для проверки готовности к чтению Ничего не происходит Ничего не происходит

Параметр сокета SO_LINGER

Этот параметр определяет, как работает функция

close
для протоколов, ориентированных на установление соединения (например, TCP и SCTP, но не UDP). По умолчанию функция
close
возвращает управление немедленно, но если в отправляющем буфере сокета остаются какие-либо данные, система попытается доставить данные собеседнику.

Параметр сокета

SO_LINGER
позволяет нам изменять поведение по умолчанию. Для этого необходимо, чтобы между пользовательским процессом и ядром была передана следующая структура, определяемая в заголовочном файле
<sys/socket.h>
:

struct linger {

int l_onoff; /* 0=off, ненулевое значение=on */ int l_linger;

/* время ожидания, в POSIX измеряется в секундах */

};

Вызов функции

setsockopt
приводит к одному из трех следующих сценариев в зависимости от значений двух элементов структуры
linger
.

1. Если

l_onoff
имеет нулевое значение, параметр выключается. Значение
l_linger
игнорируется и применяется ранее рассмотренный заданный по умолчанию сценарий TCP: функция
close
завершается немедленно.

2. Если значение

l_onoff
ненулевое, а
l_linger
равно нулю, TCP сбрасывает соединение, когда оно закрывается [128, с. 1019–1020], то есть TCP игнорирует все данные, остающиеся в буфере отправки сокета, и отправляет собеседнику сегмент RST, а не обычную последовательность завершения соединения, состоящую из четырех пакетов (см. раздел 2.5). Пример мы покажем в листинге 16.14. Тогда не наступает состояние TCP TIME_WAIT, но из-за этого возникает возможность создания другого воплощения (incarnation) этого соединения в течение 2MSL секунд (удвоенное максимальное время жизни сегмента). Оставшиеся старые дублированные сегменты из только что завершенного соединения могут быть доставлены новому воплощению, что приведет к ошибкам (см. раздел 2.6).

При указанных выше значениях

l_onoff
и
l_linger
SCTP также выполняет аварийное закрытие сокета, отправляя собеседнику пакет ABORT (см. раздел 9.2 [117]).

ПРИМЕЧАНИЕ

Отдельные выступления в Usenet звучат в защиту использования этой возможности, поскольку она позволяет избежать состояния TIME_WAIT и снова запустить прослушивающий сервер, даже если соединения все еще используются с известным портом сервера. Так не нужно делать, поскольку это может привести к искажению данных, как показано в RFC 1337 [11]. Вместо этого перед вызовом функции bind на стороне сервера всегда нужно использовать параметр сокета SO_REUSEADDR, как показано далее. Состояние TIME_WAIT — наш друг, так как оно предназначено для того, чтобы помочь нам дождаться, когда истечет время жизни в сети старых дублированных сегментов. Вместо того, чтобы пытаться избежать этого состояния, следует понять его назначение (см. раздел 2.6).

Тем не менее в некоторых обстоятельствах использование аварийного закрытия может быть оправдано. Одним из примеров является сервер терминалов RS-232, который может навечно зависнуть в состоянии CLOSE_WAIT, пытаясь доставить данные на забитый порт. Если же он получит сегмент RST, он сможет сбросить накопившиеся данные и заново инициализировать порт.

3. Если оба значения —

l_onoff
и
l_linger
— ненулевые, то при закрытии сокета ядро будет ждать( linger) [128, с. 472]. То есть если в буфере отправки сокета еще имеются какие-либо данные, процесс входит в состояние ожидания до тех пор, пока либо все данные не будут отправлены и подтверждены другим концом TCP, либо не истечет время ожидания. Если сокет был установлен как неблокируемый (см. главу 16), он не будет ждать завершения выполнения функции
close
, даже если время задержки ненулевое. При использовании этого свойства параметра
SO_LINGER
приложению важно проверить значение, возвращаемое функцией
close
. Если время ожидания истечет до того, как оставшиеся данные будут отправлены и подтверждены, функция
close
возвратит ошибку
EWOULDBLOCK
и все данные, оставшиеся в буфере отправки сокета, будут сброшены.

Поделиться с друзьями: