Вертолёт, 2006 №4
Шрифт:
Определение посадочной скорости сводится к определению кинетической энергии вертолета в момент приземления. В этом примере по расчету уравнения (6) она равна: mV 2^2/2=(725+480)-(955+65)-1205-1020=185 тыс. кгм. По уравнению (11) энергия вертолета в момент приземления равна (725+480)+(206)-(700+398+63+65) = =1411–1226=185 тыс. кгм. Первая скобка в этом выражении — это энергия в начале предпосадочного маневра, вторая — энергия, приобретенная во время предпосадочного маневра, третья скобка — потерянная энергия.
Ошибка в величине потерянной энергии на 10 % приблизительно в 2 раза изменяет величину кинетической энергии вертолета в момент посадки, так что в ~1,5 раза изменяет величину посадочной скорости. Следовательно, потерянная энергия несущего винта (а это индуктивные и профильные потери) должна определяться по совершенным
Был сделан расчет посадки на режиме авторотации вертолета, у которого момент инерции винта увеличен до 1450 кгм/с 2, то есть на 20 %.
Управление вертолетом было таким же, как при J =1200 кгм/с^2. Расчет показал, что уменьшилась раскрутка винта при торможении вертолета и частота вращения винта при «подрыве» стала большей: 2=18 1/с вместо 2=17 1/с. Изменение кинетической энергии винта при «подрыве» увеличилось только на 9 %, стало равным 224 тыс. кгм. Посадочная скорость V xgи длина пробега не изменились. Подъемная сила Y из-за увеличения ю возросла, так что вертикальная составляющая посадочной скорости V ygуменьшилась на 0,7 м/с, с 2,6 до 1,9 м/с. Таким образом, внесенная из-за увеличения J энергия 224000-206000=18000 кгм привела к уменьшению кинетической энергии вертолета в момент посадки только на 1800 кгм (уменьшение V yg), а 16200 кгм — повышение индуктивных потерь винта из-за увеличения Y. Если выполнять посадки с V yg=2,6 м/с, то можно увеличить начальную высоту маневра и время интенсивного торможения вертолета с большим углом тангажа, так что посадочная скорость уменьшится, но немного, до 58 км/ч. Эти примеры показали, что увеличение момента инерции винта, а следовательно, массы вертолета нецелесообразно.
Для получения сертификата летной годности делается много расчетов посадок вертолета с одним отказавшим двигателем. Поэтому и был сделан расчет энергий при такой посадке. Летчик выполнял планирование с V=75 км/ч и начал предпосадочный маневр на высоте 29 м. Предпосадочный маневр выполнялся очень плавно: тангаж увеличен за 4 с на 7°, dV/dt=-1,1 м/с^2, при «подрыве» шаг винта увеличен не до максимального, а на 4° за 6 с. На 9-й секунде N двувеличилась до максимальной, начала резко уменьшаться. Маневр длился 13 с. При посадке V xg=26 км/ч, V yg=-0,6 м/с, =22,3 1/с. Получились следующие результаты (в тыс. кгм):
энергия винта и планера соответственно составляет 530 и 0. Работа внешних сил А=320-530-0=-210. Энергия винта, равная 530, состоит из индуктивных и профильных потерь: 1680 и 630; энергии двигателя минус потери на привод систем вертолета: 1685; изменения кинетической энергии винта: -95 (1680+630-1685-95=530). Кинетическая энергия вертолета при посадке и посадочная скорость: mV 2^2/2=(243+320)-530=33, V 2=26 км/ч.
Следует отметить, что по сравнению с посадкой на авторотации из-за работы одного двигателя интеграл от XV уменьшился, а его составляющие от индуктивных и профильных потерь винта велики (из-за малых скоростей полета и увеличения продолжительности маневра). Поэтому небольшие ошибки при определении этих потерь недопустимы. Важно правильно определить продолжительность предпосадочного маневра, от которой зависит величина интегралов, в том числе энергия, вносимая работающим двигателем. В книге «Динамика вертолета. Предельные режимы полета» (Браверман А.С., Вайнтруб А.П. М.: Машиностроение, 1988) время маневра определялось по предварительным расчетам нескольких маневров численным интегрированием уравнений движения. Затем была получена аналитическая зависимость времени маневра от высоты, на которой происходит отказ двигателя.
В приведенном выше примере (формула 6) вносимая энергия равна 243+320=563, а потерянная — 530, их разность, то есть кинетическая энергия в момент посадки, равна 33. По расчетам по формуле (11) вносимая энергия равна 243+320+1685+95=2343, а потерянная 1680+630=2310 кгм. Значит, кинетическая энергия при посадке и посадочная скорость определяются как малая разность больших величин, следовательно, требуется высокая
точность расчетов. Небольшая ошибка в величине потерь приводит к принципиальному искажению результатов расчетов. Однако даже при ошибке можно найти такое управление шагом винта и мощностью двигателя, что посадочная скорость будет малой.В работе «О безопасной высоте висения» (вертикальной посадке вертолета после отказа двигателя на режиме висения) на числовом примере показано, что энергия работающего двигателя составляет 70 % от энергии индуктивных и профильных потерь, а энергия «подрыва» — 12 %. Изменение кинетической энергии вертолета мало, так как вертолет изменяет скорость от нуля до малой величины: вертикальная посадочная скорость не более 3–4 м/с. Требуется найти потенциальную энергию вертолета, которой пропорциональна высота висения. Потенциальная энергия равна 100 %- (70+12)%=100 %-82 %=18 %, то есть величины энергий не так близки, как при посадке с режима планирования с поступательной скоростью.
Есть методы, в которых для определения dV/dt и V ygиспользуется уравнение
Авторы фактически предполагают, что потери мощности и сила X равны как при маневрировании вертолета, так и при установившемся горизонтальном полете.
В книге «Динамика полета вертолета» (Трошин И.С. М.: МАИ, 1990) дана следующая формула:
где — N vувеличение мощности при изменении направления полета. Однако потери мощности изменяются и при прямолинейном полете. В работе нет указания, как найти N v.
Предлагается другая формула:
В это уравнение входят мощность двигателя и коэффициент в, названный пропульсивным коэффициентом вертолета. Известно понятие о пропульсивном коэффициенте несущего винта. Он определяется как отношение приращений ( — обозначение приращений) пропульсивной и полной мощностей несущего винта:
=- (XV)/N.
Получим аналогичное выражение для коэффициента в. Приравняв друг к другу выражения для произведения XV по уравнениям (4) и (9), получим
Это уравнение при установившемся горизонтальном полете обращается в следующее:
Вычтем из первого уравнения второе:
Обозначив
получим предлагаемое выражение (12). Из выражения (13) видно, что коэффициент в, кроме изменения индуктивных и профильных потерь несущего винта при маневрировании, учитывает изменение силы сопротивления планера вертолета, изменение взаимовлияния винтов и планера, а у многовинтовых схем — изменение взаимовлияния винтов. Он учитывает также изменение потерь мощности двигателя при маневрировании.
Коэффициент внаходится не по формуле (13), а следующим образом. Определенная в летных испытаниях или по расчету зависимость GV yg=f(N дв) на установившемся прямолинейном полете при G=const, Vcos=const и R=const линеаризуется, то есть максимально близко к экспериментальным или расчетным точкам проводится прямая линия (нетрудно показать, что точки располагаются близко к прямым). Эта зависимость определяется не при V=const, а при Vcos=const, чтобы охватить все возможные траектории с любыми углами . Так, в полете вертолета по вертикали, когда 0~=±90°, точки с разными V ложатся на кривую с Vcos=const=0. Коэффициент вравен тангенсу угла наклона прямой. По этой зависимости находится также N дв.г. п.