Возвращение времени. От античной космогонии к космологии будущего
Шрифт:
Мы видим, что космологическая дилемма встроена в ньютонову парадигму: то, что обеспечило успех теории на меньших масштабах (включая зависимость от статического фона и тот факт, что один и тот же закон имеет бесконечное количество решений), превращается в причину ее неприменимости как основы космологии.
Успех физики привел к первой попытке изучения космологии с научной точки зрения. Неудивительно, что один из способов разрешения космологической дилеммы заключается в признании того, что наша Вселенная – лишь экземпляр из обширной коллекции, потому что все наши теории можно применить лишь к частям значительно большей системы. Это, как я понимаю, определяет привлекательность сценариев с многочисленными вариантами Вселенных.
Когда мы проводим эксперимент, мы держим начальные условия эксперимента под контролем. Мы изменяем их для проверки гипотез. Но когда дело доходит до космологических наблюдений, выясняется,
То, что мы должны и проверять гипотезы о законах природы, и контролировать начальные условия, сковывает нас. Если предсказания не согласуются с наблюдениями, есть два способа исправить теорию. Мы можем изменить гипотезу либо о законах, либо о начальных условиях. И то, и другое скажется на результате эксперимента.
Возникает проблема: откуда мы знаем, какая из двух гипотез нуждается в коррекции? Наблюдая за небольшой частью Вселенной (например, за звездой или галактикой), мы оцениваем справедливость закона исходя из многочисленных опытов. Все они служили проверке одного и того же закона, и любые различия между ними должны быть приписаны различиям в их начальных условиях. Но в случае Вселенной мы не в состоянии отличить влияние изменения гипотезы о законе от влияния изменения гипотезы о начальных условиях.
Эта проблема нередко возникает в космологических исследованиях. Серьезной проверкой теории ранней Вселенной явилось измерение структуры реликтового, или микроволнового фонового излучения (МФИ). Это изображение Вселенной около 400 тысяч лет после Большого взрыва. Наиболее изученной гипотезой в космологии является теория Большого взрыва и последующего расширения Вселенной, которая утверждает, что в самом начале истории Вселенная быстро расширялась. По мере расширения Вселенной стирались ее первоначальные черты, что привело к большой, сравнительно безликой Вселенной, которую мы наблюдаем. Инфляционная модель также предсказывает наличие структуры в МФИ, очень похожей на сегодняшнюю.
Несколько лет назад ученые сообщили, что обнаружили указания на новые неожиданные свойства МФИ – отклонение от формы распределения Гаусса, чего не предсказывает стандартная теория инфляции [65] . У нас два варианта объяснения этого нового наблюдения: мы можем изменить теорию или первоначальные условия. Теория инфляции Вселенной основана на ньютоновой парадигме, и ее предсказания зависят от начальных условий, на которые влияют законы природы. Через несколько дней после появления статьи, в которой были представлены доказательства отклонений от Гауссовой формы распределения, появились попытки их объяснить. Некоторые интерпретаторы пошли по пути изменения законов, другие модифицировали исходные условия. Обе стратегии успешно объяснили новые наблюдения. На самом деле успех любой из этих стратегий был предрешен [66] . Как обычно случается, дальнейшие наблюдения не подтвердили первоначальное заявление. Сейчас мы не знаем, есть ли в МФИ отклонения от формы распределения Гаусса [67] .
65
Yadav, Amit P. S., and Benjamin Wandelt Detection of Primordial Non-Gaussianity (fNL) in the WMAP 3-Year Data at Above 99.5 % Confidence // arXiv:0712.1148 [astro-ph], PRL100,181301, 2008.
66
Chen Xingang et al. Observational Signatures and Non-Gaussianities of General Single Field Inflation // arXiv: hep-th/0605045v4 (2008); Cheung, Clifford, et al. The Effective Field Theory of Inflation // arXiv.org/abs/0709.0293v2 [hep-th] (2008); Holman, R., and Andrew J. Tolley Enhanced Non-Gaussianity from Excited Initial States // arXiv:0710.1302v2 (2008).
67
Это не значит, что влияние начальных условий на МФИ нельзя отличить от изменений в инфляционной модели, по крайней мере, в рамках определенных классов моделей. См.: Agullo, Ivan, Navarro-Salas, Jose, and Leonard Parker arXiv:1112.1581v2. Благодарю М. Джонсона за обсуждение этого вопроса.
Мы рассмотрели пример с двумя различными способами привести теорию в соответствие с данными. Если мы считаем, что законы и начальные
условия описаны с помощью некоторых параметров, то существует два набора параметров, посредством которых можно подогнать теорию. Такую ситуацию называют вырожденной. Обычно, когда есть вырождение, мы проводим дополнительные наблюдения, чтобы определить, какая из двух возможных поправок верна. Но в случае с реликтовым излучением, которое является следом события, произошедшего лишь однажды, мы, возможно, никогда не разрешим вырождение. Учитывая ограничения в измерении МФИ, вполне возможно, мы не сможем отделить объяснения на основе изменения законов от объяснений, основанных на модификации исходного состояния [68] . Однако без возможности отделить влияние законов от влияния начальных условий ньютонова парадигма теряет силу как метод, способный объяснять физические явления.68
Уникальность Вселенной сводит на нет и другие попытки проверки теорий рождения Вселенной. В лабораторной физике мы всегда имеем дело с шумом, возникающим из-за статистических неопределенностей в данных. Зачастую он может быть уменьшен путем множества измерений, потому что влияние случайного шума уменьшается с увеличением числа испытаний. Так как Вселенная уникальна, невозможно таким образом сократить ошибки некоторых космологических наблюдений. Эти статистические неопределенности известны как космическая дисперсия.
Мы готовы пересмотреть предположения, которыми руководствовались физики со времен Ньютона. Прежде мы думали, что такие теории, как механика Ньютона или квантовая механика, годятся на роль фундаментальной теории (если бы ее удалось построить), идеального зеркала мироздания, так что все явления соответствовали бы посредством математики этой фундаментальной теории. Сама структура ньютоновой парадигмы, основанной на вневременных законах, действующих во вневременном пространстве конфигураций, считалась необходимым элементом этого построения. Я утверждаю, что эта метафизическая фантазия гарантированно приведет нас к путанице, лишь только мы попытаемся применить ее ко всей Вселенной. Эта позиция требует повторной оценки состояния теорий в рамках ньютоновой парадигмы – от кандидатов в фундаментальные теории до приближенного описания небольших подсистем. Эта переоценка уже происходит и опирается на два взаимосвязанных утверждения:
1) Все теории, с которыми мы работаем (в том числе стандартная модель физики элементарных частиц и ОТО), приблизительны. Они применимы в ограниченных областях, которые включают лишь часть имеющихся во Вселенной степеней свободы. Мы называем такие теории эффективными.
2) Во всех экспериментах и наблюдениях, связанных с ограниченными областями, мы записываем значения лишь малого подмножества имеющихся степеней свободы, пренебрегая остальными. Данные сравниваются с предсказаниями эффективных теорий.
Успех современной физики целиком основан на исследовании свойств ограниченных областей природы, которые моделируются с помощью эффективных теорий. Искусство физика-экспериментатора заключается в постановке экспериментов, позволяющих выделить и изучить лишь несколько степеней свободы, пренебрегая остальной Вселенной. Теоретики нацелены на создание эффективных теорий, позволяющих моделировать ограниченные области, которые исследуют экспериментаторы. Никогда прежде у нас не было возможности сравнить предсказания кандидатов на роль действительно фундаментальной теории (я имею в виду такую теорию, которая не может быть понята как эффективная) с экспериментом.
Экспериментальная физика изучает ограниченную область природы. Подсистема, которая моделируется в предположении, как если бы она была единственной во Вселенной, называется замкнутой системой. Но не стоит забывать, что в отрыве от целого никогда не бывает полного. В мире всегда есть взаимодействие между любой подсистемой и объектами за ее пределами. Любые подсистемы Вселенной – в той или иной степени открытые, то есть ограниченные, системы, взаимодействующие с объектами за их пределами. Занимаясь физикой “в ящике”, мы аппроксимируем открытую систему замкнутой.
Экспериментальная физика большей частью состоит из преобразования открытых систем в приблизительно замкнутые. Мы никогда не сможем сделать это точно хотя бы потому, что, проводя измерения системы, вторгаемся в нее. (Это проблема в интерпретации квантовой механики, но сейчас давайте придерживаться макромира.) Каждый эксперимент есть борьба за данные, которые вы желаете извлечь, очистив их от неизбежного фона, приходящего из-за пределов не полностью замкнутой системы. Экспериментаторы тратят немало сил, убеждая себя и коллег в том, что они видят выделенный сигнал и что они сделали все, чтобы уменьшить влияние паразитных эффектов.