Чтение онлайн

ЖАНРЫ

Возвращение времени. От античной космогонии к космологии будущего
Шрифт:

Мы экранируем эксперименты от посторонних вибраций, полей и излучений. Для многих экспериментов этого достаточно, но некоторые настолько чувствительны, что должны быть защищены даже от прохождения космических лучей сквозь детектор. Чтобы защитить от них лабораторию, можно перенести ее в шахту, на несколько миль под землю. Так мы поступаем, проводя измерения нейтрино Солнца. Это снижает фон других излучений до приемлемого уровня, позволяющего регистрировать редкие нейтрино. Но нет способа изолировать лабораторию от самих нейтрино. Детекторы, погруженные глубоко под лед на Южном полюсе, регистрируют нейтрино, которые вошли в Землю в районе Северного полюса и прошли сквозь планету.

Даже если построить астрономически толстый экран для нейтрино, есть нечто, что пробьется сквозь экран. Это гравитация. В принципе, ничто не может ее экранировать или остановить распространение гравитационных волн, поэтому ничто не может быть абсолютно изолированным.

Я понял это, когда работал над диссертацией. Я строил модель ящика с гравитационными волнами, отражавшимися от стенок, но все мои модели оказались нерабочими, поскольку гравитационные волны проходили сквозь стенки. Я пробовал увеличить удельную плотность материала, но прежде чем модель приблизилась к состоянию, при котором стенки начали отражать гравитационное излучение, она коллапсировала в черную дыру. Я долго ломал голову, а потом понял: проблема, которую я не мог решить, гораздо интереснее построения модели. Мне удалось показать, что стенки, какой бы толщины и плотности они ни были, не отразят гравитационные волны [69] . Чтобы прийти к этому, я должен был принять за основу лишь утверждения общей теории относительности о том, что энергия в веществе всегда положительна, а звук не может распространяться быстрее света. Это значит, что нет системы, изолированной от Вселенной. Стоило бы возвести это в принцип (я буду называть его принципом несуществования замкнутых систем).

69

Smolin, Lee The Thermodynamics of Gravitational Radiation // Gen. Rel. & Grav. 16:3, 205–210 (1984); Smolin, Lee On the Intrinsic Entropy of the Gravitational Field // Gen. Rel. & Grav. 17:5, 417–437 (1985).

Есть и другая причина, в силу которой моделирование открытой системы как замкнутой – всегда приближение. Мы не в состоянии предвидеть случайное разрушительное вмешательство в систему извне. Мы можем измерять, предсказывать и подавлять фон. Но внешний мир может перечеркнуть попытки изоляции. Самолет может врезаться в здание, где располагается лаборатория. Ее может разрушить землетрясение. С Землей может столкнуться астероид. Облако темной материи может пройти сквозь Солнечную систему, нарушив орбиту Земли и столкнув ее с Солнцем [70] . Или кто-нибудь щелкнет выключателем в подвале и обесточит лабораторию. Список того, что может сорвать эксперимент, практически бесконечен. Когда мы моделируем эксперимент, как если бы имели дело с замкнутой системой, мы исключаем из модели все эти возможности.

70

Может быть, нам помешает фазовый переход, который случится, когда ложный вакуум, в котором мы живем, распадется. См.: Coleman, Sidney, and Frank de Luccia Gravitational Effects on and of Vacuum Decay // Phys. Rev. D 21:12, 3305–3315 (1980).

Чтобы включить все, что может помешать эксперименту, потребуется модель Вселенной в целом. Но мы не сможем проводить физические опыты, не исключив все эти возможности из моделей и расчетов. Однако исключая их, мы в принципе основываем физику на приближениях.

Основные теории моделируют части природы, “вырезанные” экспериментаторами из мира. Возможно, когда они были предложены, они представлялись фундаментальными, но со временем теоретики пришли к заключению, что они лишь эффективное средство описания ограниченного числа степеней свободы.

Физика частиц – хороший пример эффективной теории. Эксперименты до сих пор исследовали фундаментальные свойства природы лишь до определенного масштаба. После измерений на Большом адронном коллайдере в ЦЕРНе этот масштаб – около 10–17 см. Значит, стандартная модель физики элементарных частиц (СМ), которая хорошо согласуется с известными экспериментальными данными, должна рассматриваться в качестве приближения. Кроме того, эта модель не учитывает гравитацию. Она не рассматривает неизвестные пока явления, которые могут проявиться на еще более коротких расстояниях.

В квантовой физике вследствие принципа неопределенности существует обратная зависимость между масштабом длины и энергией. Чтобы зондировать пространство на определенном масштабе, необходимо излучение частиц определенной энергии. Чтобы перейти на более короткие расстояния, нам необходимы более высокие энергии частиц. Так что нижний предел масштаба длины, которого мы достигли, определяется верхним пределом энергии процессов, которые мы наблюдаем. Но энергия и масса – это, согласно специальной

теории относительности, одно и то же, и, значит, мы исследовали мир лишь до определенной шкалы энергии – и ничего не знаем о частицах слишком массивных, чтобы их наблюдать в нынешних экспериментах на коллайдере. Недостающие в картине мира явления могут включать не только новые виды элементарных частиц, но и неведомые силы. Или может оказаться, что основные принципы квантовой механики неверны и нуждаются в модификации для описания процессов, протекающих на более коротких расстояниях и при больших энергиях. Поэтому мы говорим о СМ как об эффективной теории, не противоречащей эксперименту и позволяющей делать надежные предсказания в определенной области.

Понятие эффективной теории разрушает некоторые привычные понятия вроде простоты и красоты – признаков истинности теории. Поскольку мы не знаем, что может произойти при более высоких энергиях, многие гипотезы за пределами своей области соответствуют той или иной эффективной теории. Эти эффективные теории обладают внутренней простотой, потому что должны согласовываться с наиболее простым и элегантным способом распространения их на неизвестные области. Элегантность общей теории относительности и СМ большей частью объясняется принятием их как эффективных теорий. Простота и красота являются признаками не истины, а слаженной примерной модели, работающей в ограниченной области [71] .

71

Это объясняет, почему падающие тела описывают параболу. Эта кривая удовлетворяет уравнениям, которые просты, потому что требуют лишь двух входных параметров: ускорения свободного падения и начальных скорости и направления движения.

Само наличие понятия эффективности – признак зрелости теории элементарных частиц. Когда мы были молоды, казалось, что законы природы открыты нам. Сейчас, поработав несколько десятилетий со СМ, мы уверены в том, что это верная модель, применимая в ограниченной области, и менее уверены в ее распространении за границы этой области. (Разве это не похоже на нашу жизнь? Когда мы становимся старше, нам проще признаться в собственном незнании чего-либо.)

На первый взгляд это вызывает разочарование. Физика призвана открывать фундаментальные законы, но эффективная теория по определению не такова. Если у вас слишком наивный взгляд на науку, вы, возможно, думаете, что теория не может одновременно быть согласованной со всеми экспериментальными данными и рассматриваться в лучшем случае как приближение к истине. Концепция эффективной теории отражает это тонкое различие.

Она также иллюстрирует прогресс в физике элементарных частиц. Она говорит, что физика – это процесс построения теории, наилучшим образом отражающей реальность. По мере того, как мы в экспериментах продвигаемся все дальше в направлении малых расстояний и больших энергий, мы можем обнаружить новые явления, и чтобы описать их, нам понадобится новая модель. Как и СМ, это будет эффективная теория, пусть применимая в более широкой области.

Понятие эффективности предполагает, что прогресс в физике связан с революциями, изменяющими концептуальные основы нашего понимания природы и при этом сохраняющими достижения прежних теорий. Ньютонова физика может рассматриваться в качестве эффективной теории, применимой в области, где скорости гораздо ниже скорости света и где квантовыми эффектами можно пренебречь. Здесь она останется столь же успешной, как прежде.

Общая теория относительности (ОТО) – еще один пример теории, когда-то претендовавшей на фундаментальное описание природы. Однако она, как сейчас ясно, представляет собой эффективную теорию, например потому, что не описывает квантовые явления. ОТО в лучшем случае является приближением к единой квантовой теории природы и может быть ее частным случаем.

Квантовая механика тоже, скорее всего, является приближением к более глубокой теории. Вот один из признаков этого: ее уравнения линейны. Это означает, что следствия из нее всегда прямо пропорциональны вызвавшему их действию. Любой другой пример, в котором используются линейные уравнения, возникает как аппроксимация к более фундаментальной (но все-таки эффективной) нелинейной теории (в том смысле, что эффекты могут быть пропорциональны действию в более высокой степени). Готов поспорить, что когда-нибудь это произойдет и с квантовой механикой.

Все теории, с которыми мы до сих пор имели дело, были эффективны. Печально сознавать, что они лишь аппроксимации. Мы хотели бы построить фундаментальную теорию, описывающую природу без каких-либо приближений. Но это невозможно, пока мы следуем ньютоновой парадигме. Теории, достойные восхищения – физика Ньютона, ОТО, квантовая механика, СМ, – не могут лечь в основу теории, применимой ко всей Вселенной без аппроксимации. Решение космологической задачи следует искать за рамками ньютоновой парадигмы.

Поделиться с друзьями: