Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
Шрифт:
В QNX4 некоторые сервисы были наделены способностью послать как сигнал, так и прокси, в то время как другие сервисы были наделены способностью послать либо только одно, либо только другое. Мало того, обычно это выполнялось несколькими различными способами. Например, чтобы доставить сигнал, вы должны были применить функцию kill. Чтобы доставить прокси или сигнал по срабатыванию таймера, вы должны были использовать отрицательный номер сигнала (для указания на то, что это прокси) или положительный номер сигнала (для указания на то, что это сигнал). И, наконец, обработчик прерываний мог доставлять только прокси.
В QNX/Neutrino все
На самом деле, функциональность
В самых ранних версиях QNX (семейство QNX2) программирование драйверов устройств было чем-то из области черной магии. В QNX4 это тоже поначалу была загадочная вещь, но затем, в конце концов, появилось несколько примеров программ. В QNX/Neutrino этому вопросу посвящены книги и учебные курсы. И, как оказалось, модели драйверов в QNX/ Neutrino и QNX4 на архитектурном уровне достаточно сходны. В то время как в QNX4 была кромешная путаница вокруг того, что такое «функции установления соединения» и что такое «функции ввода-вывода», в QNX/Neutrino все четко разделено. Также под QNX4 вы (разработчик драйвера устройства) должны были выполнять большую часть работы (программирование основного цикла обработки сообщений, сопоставление контекста каждому сообщению ввода-вывода, и т.д.) самостоятельно. В QNX/Neutrino все это в значительной степени упрощено введением библиотеки администратора ресурсов.
Одно из самых существенных отличий QNX/Neutrino от QNX4 в отношении встраиваемости состоит в том, что QNX/Neutrino поддерживает процессоры MIPS и PPC (Power PC). QNX4 изначально была «дома» на IBM PC с их BIOS и «очень» стандартным набором аппаратных средств, QNX/Neutrino же одинаково по-домашнему чувствует себя на разных платформах с BIOS (или монитором ПЗУ) или без нее, а также на нестандартной аппаратуре, комплектация которой выбирается изготовителем (и часто без учета требований ОС). Это означает, что ядро QNX/Neutrino должно было обеспечивать поддержку исходящих вызовов (callouts), чтобы вы могли, например, задать свой тип контроллера прерываний и работать на этих аппаратных средствах без необходимости приобретения лицензии на исходный текст операционной системы.
Другая группа изменений, которые вы заметите при переносе приложений из QNX4 в QNX/Neutrino, особенно на другие платформы, касается того, что процессоры MIPS и PPC уж больно вычурны по части выравнивания. Вы не можете обращаться к N-байтовому объекту иначе чем по адресу, кратному N. При работе на x86 (с выключенным флагом выравнивания) вы бы волей-неволей обратились к памяти. Изменив вашу программу так, чтобы все структуры были правильно выровнены (для не-x86 процессоров), вы также заметите, что ваша программа после этого на x86 станет выполняться быстрее, потому что x86 быстрее обращается к выровненным данным.
Другое, что так часто не дает людям жить — это порядок следования байт, прямой (big-endian) или обратный (little-endian). (Кому интересна этимология этих терминов, загляните в английский оригинал «Путешествий Гулливера» Джонатана Свифта :-) — прим. ред.). У процессора x86 возможен только один порядок следования байт,
и он обратный. Процессоры MIPS и PPC допускают оба порядка следования байт, т. е. могут работать как с прямым, так и с обратным. Кроме того, процессоры MIPS и PPC являются процессорами типа RISC (с сокращенным набором команд), что означает, что некоторые операции типаСуществующие версии QNX4 работают только на однопроцессорных системах, в то время как QNX/Neutrino уже на момент публикации первого издания этой книги обеспечивала поддержку SMP по меньшей мере на архитектуре x86. SMP дает значительные преимущества, особенно в многопоточной ОС, но это одновременно и гораздо более серьезный пистолет для простреливания ноги (кто любопытен, поищите в Интернет по ключевой фразе «shoot yourself in the foot» — прим. ред.).
Например, в однопроцессорной машине обработчик прерывания (ISR) может вытеснить поток, но наоборот никогда не бывает. В однопроцессорной машине бывает полезно представить себе, что потоки якобы выполняются одновременно, хотя в действительности это не так.
В блоке SMP поток и обработчик прерывания могут работать одновременно, да и несколько потоков тоже могут работать одновременно. Так что SMP — это не только превосходная рабочая станция, но и неплохое средство тестирования программного обеспечения — если вы сделали какие бы то ни было «плохие» предположения о защите в многопоточной среде, в SMP-системе они однажды обязательно выплывут.
Философия переноса программ
Давайте теперь взглянем на все «сверху». Здесь мы рассмотрим:
• обмен сообщениями и систему «клиент/сервер»;
• обработчики прерываний (ISR).
Анализ обмена сообщениями
В QNX4 клиент мог найти сервер двумя способами:
• используя глобальное пространство имен;
• выполнение open в отношении администратора ввода/вывода.
Если взаимоотношения «клиент/сервер, которые вы переносите, базируются на глобальном пространстве имен, тогда клиент использует:
qnx_name_locate
а сервер регистрирует свое имя при помощи:
qnx_name_attach
В этом случае у вас есть два выбора. Вы можете либо попробовать сохранить вариант с глобальными именами, либо модифицировать клиента и сервер так, чтобы они работали подобно стандартному администратору ресурсов.
Я рекомендую вам последний вариант, поскольку именно этот вариант характерен для QNX/Neutrino — сводить все к администраторам ресурсов, а не пытаться навесить кусок администратора ресурсов на службу глобальных имен.