ВЫ НА САМОМ ДЕЛЕ ХОТЕЛИ БЫ ЗНАТЬ ВСЕ ОБ ЭКОНОМИКЕ?
Шрифт:
Сельскохозяйственная революция была огромным шагом вперед и необходимым условием для развития всей человеческой культуры, однако в более глубоком смысле ее потенциал весьма ограничен, если мы полагаемся только на солнечную энергию. По историческим меркам биомасса как источник энергии возникла совсем недавно. В плане рассмотрения растений как источника пищи ограничения связаны с тем фактом, что при самых лучших методах выращивания зерновых на само зерно приходится не более 50 % веса растения. Без существенного повышения веса растений на гектар мы не можем значительно увеличить сбор зерна с гектара по сравнению с урожайностью лучших сегодняшних сортов. Для получения высококачественного животного белка, необходимого для нормального развития растущего организма и для поддержки иммунного потенциала и т.п., нам приходится расходовать часть урожая на корма для сельскохозяйственных животных. Только внесение в почву химических удобрений, микроэлементов, использование пестицидов и т.п. позволяет
Таблица 1. Сравнительные плотности потоков энергии
Источник энергии
Плотность потока
кВт/кв.м.
Солнечная энергия (на поверхности Земли)
0,0002
Ископаемое топливо
10,000
Энергия ядерного распада
70,000
Термоядерный синтез (2000 г.)
70,000
Термоядерный синтез (21 век)
1015
Таблица 2. Стоимость энергии
Источник
Стоимость
долл/МВт час
Инвестиции
млрд.долл/ГВт
Нефть
45,7
0,94
Уголь
31,7
0,97
Газификация угля
55,7
1,67
Распад легкой воды
28,5
1,16
Реактор на быстрых нейтронах
33,9
1,43
Термоядерный синтез (2000 г.)
45,2
1,92
Солнечный коллектор
490,0
20,90
Солнечные батареи
680,0
28,90
Благодаря ископаемым топливам и «химической революции» XVIII-XIX столетий, ставшей реальностью и инициированной использованием тепловых двигателей во время индустриальной революции, человечество сделало большой шаг вперед по преодолению ограничений, связанных с солнечными источниками энергии. Однако для глобального использования человечеством ископаемые топлива имеют исторически ограниченное время жизни. Уголь это спрессованные останки растений, и по этой причине он является исчерпаемым источником. Нефть и природный газ, в отличие от угля, не являются ископаемыми окаменелостями в прямом смысле. Они образуются в естественных условиях в любой части планеты, где существуют соответствующие условия и преобладающим химическим процессом является восстановление, а не окисление. Без сомнения, сегодня глубоко в земной коре непрерывно идут процессы образования новых месторождений нефти и газа. Однако в долгосрочном плане для человечества этот источник также ограничен и исчерпаем. Эти же общие рассуждения применимы и к ядерному распаду, по крайней мере до тех пор, пока мы полагаемся на извлечение делящихся материалов из земных руд.
Управляемый термоядерный синтез снимает подобные ограничения. Водород заполняет всю Вселенную, а получение дейтерия из смеси изотопов водорода, существующих на Земле, уже решенная проблема. Кроме этого, термоядерный синтез, по сравнению с остальными, почти неограниченный источник энергии на Земле, и по мере развития технологии он станет абсолютно достаточным источником энергии для всех возможных практических целей на тысячелетия вперед. При чрезвычайно высоких плотностях потока энергии, доступных благодаря развитию управляемого термоядерного синтеза, созданный должным образом поток плазмы сверхвысокой плотности может быть использован для выработки горючего для обычных процессов слияния, к примеру для термоядерного синтеза на чистом водороде. Таким образом, по мере приближения к экономическому «прорыву» в производстве энергии на управляемых термоядерных станциях первого поколения мы подходим к грани, за которой находятся неограниченные источники «искусственной энергии».
Жить надеждами, возлагаемыми на «возобновляемые» источники энергии, как это предлагает бывшый министр энергетики США Джеймс Р.Шлезингер и многие другие из той же фракции, это чисто самоубийственная политика. Мы уже рассмотрели некоторые аспекты проблемы использования «биомассы» в качестве замены энергии атома и ископаемых источников. В случае же солнечных коллекторов или ячеек количество энергии, использованное обществом при их производстве, превышает общее количество энергии, собранное за все время работы этих устройств. Другими словами, энергетическая выгода обществу за надежду на подобные устройства является отрицательной.
Одна из основных идей, иллюстрируемая данными табл.2, это связь между эффективностью теплового источника
и уровнем температуры (или его эквивалентом), при котором этот источник энергии функционирует. Эта таблица вызывает воспоминания о Сади Карно (1790-1837). Пока ученые привержены «калориметрической» теории теплоты, кажется, что самое известное утверждение Карно объясняет тот факт, что более дорогие процессы производства тепла могут соревноваться с более дешевыми, если первые работают при значительно более высоких плотностях потока энергии, чем вторые. Однако сам Карно чувствовал искусственность «калориметрической» теории и использовал ее предположения только как удобное рабочее средство во время написания трактата 1824 г. Окончательное развенчание «статистической теории теплоты» позже было проведено Риманом в его работе 1859 г. «О распространении плоских воздушных волн конечной амплитуды», являющейся одним из наиболее важных источников, использованных в методе Ларуша-Римана. Лорд Рейли (1843-1919) был одним из тех, кто подчеркивал (еще в 1890 гг.), что если работа Римана 1859 г. подтвердится, то будет опровергнута вся статистическая газовая теория. Позже работы германских ученых экспериментально подтвердили правоту Римана. Данному труду Римана в связи с вопросами внутреннего строения электрона также был обязан профессор Эрвин Шредингер (1887-1961). Таким образом, за данными из Табл.2 стоит нечто большее, чем то, что когда-либо можно было бы получить в рамках калориметрической теории теплоты.
Это касается того интересного феномена, на который мы ссылались ранее в этой книге, случая, когда всего лишь часть общей энергии, подаваемой процессу, выполняет (благодаря тому, что она передается потоком значительно более высокой плотности) больше работы, чем вся подаваемая энергия, если последняя использовалась при значительно более низких плотностях потока энергии.
Этот феномен, в частности, включает также и ситуации, в которых химическая реакция не может начаться до тех пор, пока она не инициируется неким потоком энергии минимальной плотности. Конечно, существует множество аналогичных случаев. Все они связаны с идеей, которая будет развита далее в этой книге, но сама эта идея значительно глубже, чем можно предположить из этих простых примеров.
Примечания
[«] «Единство Закона», passim.
[«] Оценочные данные подобраны из исследования Уве Парпарта Хенке.
[«] Приблизительная реконструкция этого путешествия по описанию из «Одиссеи» была предпринята в 1978 г. исследователями античной Греции. Оснащение должно было включать в себя корабль типа длинных судов викингов, которые действительно строились в Средиземноморье во втором тысячелетии до н.э. «Дух корабля» сильно напоминает магнитный компас, который, вполне вероятно, существовал в то время, но было бы неуместно обсуждать здесь детальные причины этой возможности.
[«] Первые исторические сведения, которые похожи на описание настоящего примитивного общества охотников и собирателей, появляются в отчете Диодора Сицилийского (римского историка 1 столетия до н.э.) в отношении народа Атласа жителей плодородного региона современного Марокко вблизи Гибралтарского пролива. Они утверждали, что в то время, когда приморской культурой был основан урбанистический центр, их древние предки были грубыми охотниками и собирателями. Пришельцы и обучили это туземное население сельскому хозяйству. Согласно диалогам Платона, это была культура «Атлантиды». Династические имена этого общества соответствуют додинастическим именам Египта самого раннего периода. То, что антропологами часто классифицируется как культуры охотников и собирателей, не являются строго «примитивными» обществами, а скорее результатом распада и вырождения обществ с относительно более высоким уровнем культуры.
Глава 3. ТЕРМОДИНАМИКА ПОЛИТИЧЕСКОЙ ЭКОНОМИИ
Общаясь с признанной профессурой и другими «жрецами» науки, часто приходится сталкиваться со ссылками на один (или несколько) из трех так называемых «законов термодинамики». Если вы не из тех ленивцев, которые никогда не оспаривают достоверность утверждений, предлагаемых учебниками*, словарями и энциклопедиями, то небольшое исследование источников появления этих «законов» обнаружит, что использованное в данном случае понятие «закон» имеет скорее декларативный, чем научный характер. Эти «законы» являются распространением произвольного, принадлежащего аристотельской школе понятия энергии (energeia) на прикладную математическую физику на протяжении 2-й половины XIX века благодаря усилиям таких личностей, как Клаузиус, Гельмгольц, Максвелл и несчастный Больцман [1]. Три «закона термодинамики» не просто произвольны. Их ошибочность со всей убедительностью была доказана еще Иоганном Кеплером, за столетия до их формулировки.