Выход из кризиса. Новая парадигма управления людьми, системами и процессами
Шрифт:
Пример 1. Изготовитель карбюраторов для автомобилей использует два метода испытаний. Метод А: дешевый метод с негорючим газом, применяемый к каждому карбюратору. Метод Б: дорогой метод с горючим газом, применяемый к выборке из 10 карбюраторов, извлеченной из партии (инструкция, как производить выборку из 10 штук, отсутствует).
Каждый карбюратор в выборке из 10 штук испытывается с помощью обоих методов. Правило: вычисляйте среднее А и Б по 10 карбюраторам для обоих методов в каждой партии. Если А меньше Б в трех последовательных партиях, то отрегулируйте испытание А, с тем чтобы оно соответствовало испытанию Б, и продолжайте проверку. Аналогичный алгоритм действий, если в трех последовательных партиях А больше Б.
Чем плохо это правило? Предположим, что испытание А дает результаты, распределение которых то выше, то ниже результатов испытания Б. Тогда одна
Более подходящий способ сравнить два метода испытаний, при условии, что они дают реальные результаты измерений (сантиметры, миллиграммы и т. д.), – нанести результаты этих двух испытаний на график в соответствии с теми, что предложены на рис. 50 (глава 15).
Пример 2. Одно из офисных подразделений автомобильной компании отвечает за составление ежемесячных прогнозов продаж. Выполняющий эту функцию сотрудник работает со множеством источников. При сравнении с фактическим объемом продаж прогноз из месяца в месяц то приближается к нему, то удаляется от него. Прогноз на следующий месяц предусматривал подстройку методики на основе данного сравнения. Читатель может понять: то, чем занимались эти люди, гарантировало им, что их метод никогда не улучшится.
Статистическая управляемость инструментов и калибров. Как мы узнали из главы 8, записанное измерение – это конечный продукт длинной серии операций от получения исходного сырья до самой записи, включая операцию измерения на одной из стадий процесса. Как подчеркивалось множество раз в этой книге, статистическая управляемость процесса измерений жизненно важна; в противном случае измерения бессмысленны.
Покажет ли этот инструмент через неделю такие же результаты, как для сегодняшних 100 изделий? Что, если мы заменим операторов? Этот вопрос появляется в главе 8 о контроле и вновь возникает в главе 15 в связи с затратами на инспекцию. Читатель может получить совет из книги Гарри Кью и великолепной книги Western Electric Company (части B, стр. 84ff), обе ссылки приведены в конце данной главы. Стандарт 177 A. S. T M., относящийся к точности и систематическим ошибкам измерений, также будет полезен читателям (American Society for Testing and Materials – Американское общество по испытаниям и материалам).
Другая важная проблема использования инструментов – создать условия для хорошей работы. Пример (предоставленный моим другом д-ром Ллойдом Нельсоном) – образец жидкости, транспортируемый в лабораторию для измерения вязкости. По дороге он «стареет». Если бы измерительный инструмент можно было разместить там, где находится источник жидкости, результаты лучше бы характеризовали анализируемый материал.
Ложные сигналы измерительных инструментов. Неуправляемый измерительный прибор может дать сигнал о наличии особой причины, когда ее нет, или, наоборот, не обнаружить особую причину, когда она действительно существует. Недостаточно точный прибор даст ложный сигнал независимо от того, находится он в управляемом состоянии или нет. Теперь вы понимаете, насколько важно уделять внимание точности и статистической управляемости приборов. (Предложено Уильямом Шеркенбахом, Ford Motor Company.)
Оператор делал только одно измерение расстояния между двумя вспышками. Я попросил его сделать восемь замеров. Он согласился. Размах между восемью значениями оказался в четыре раза больше поля допуска. (Пример Джеффри Люфтига.)
Прежде чем делать выводы (относительно причины данного бедствия), я решил ознакомиться получше с системой измерений. Менеджер заверил меня, что измерения точны, ведь он сам их делал.
Контрольные границы – это не границы допуска. Контрольные границы, как только мы действительно достигли состояния статистической управляемости, характеризуют данный процесс и дают прогноз на завтра. Контрольная карта – это голос нашего процесса [84] .
84
Красивая формулировка Ирвинга Барра в Engineering Statistics and Quality Control (McGraw-Hill, 1953). – Прим. авт.
Распределение характеристики качества, находящейся в статистически управляемом состоянии, стабильно и предсказуемо, день за днем, неделя за неделей. Выход и затраты также предсказуемы. Теперь можно задуматься о системе канбан или о поставках по принципу «точно вовремя».
Более того, как указал Уильям Конвей, инженеры и технологи становятся изобретательнее, активнее творчески, проявляют больше инициативы в отношении совершенствования процесса, как только видят, что он находится в статистически управляемом состоянии. Они чувствуют, что дальнейшее совершенствование – это их задача (см. главу 1).
Без статистических методов попытки улучшить процесс – это действия наугад, что обычно только ухудшает ситуацию.
Вопрос на семинаре. Пожалуйста, уточните разницу между соответствием допускам и статистическим управлением процессом. Мой менеджмент считает, что соответствия допускам достаточно.
Ответ. Целью производства должно быть не только достижение состояния статистической управляемости, но и уменьшение вариаций. По мере того как уменьшаются вариации, затраты снижаются. Соответствия допускам недостаточно.
Более того, не существует способа узнать, сохранится ли соответствие допускам, если процесс не находится в состоянии статистической управляемости. До тех пор пока особые причины не определены и не исключены (по крайней мере, те, что появлялись до сих пор), никто не сможет предсказать, что произведет процесс в следующий час. Зависимость от инспекции (единственная альтернатива) опасна и дорогостояща. Ваш процесс может хорошо работать с утра и произвести изделия за границами поля допуска после полудня.
Как оценить потери, вызванные допущениями, которые сделали ваши менеджеры? Но откуда они могли знать о последствиях?
Рассчитанные допуски – это не границы, определяющие, как действовать. На деле крупные потери возникают тогда, когда процесс постоянно регулируется то одним, то другим образом с целью соответствия допускам. (См. разделы «Вера в то, что надо только попасть в допуск» и «Заблуждение теории "нуль дефектов"», глава 3.)
Любопытно, что процесс может находиться в статистически управляемом состоянии, производя 10 % дефектных изделий или даже 100 %.
Контрольные пределы не устанавливают вероятностей. Вычисления, показывающие, где должны располагаться контрольные пределы на карте, основаны на теории вероятностей. Тем не менее было бы неверным связывать любую определенную величину вероятности с тем, что статистический сигнал для обнаружения особой причины может быть ложным или что контрольная карта не сможет обнаружить и подать сигнал о наличии особой причины. Дело в том, что никакой процесс, за исключением искусственных демонстраций с использованием случайных чисел, не является стабильным, воспроизводимым.
Это правда, что некоторые книги по статистическому контролю качества и многие руководства по обучению методам применения контрольных карт приводят графики нормальных кривых и части площадей, находящихся под ними. Такие таблицы и карты вводят в заблуждение и препятствуют эффективному изучению и использованию контрольных карт.
Правила для обнаружения особых причин и предпринимаемых действий по их устранению – это не критерии для проверки статистической гипотезы о том, что система находится в стабильном состоянии.
Еще о допусках [85] . Максимальная и минимальная границы допуска на продукцию представляют собой весьма затратные и неэффективные ориентиры для производственного рабочего. Так, границы допуска для внешнего диаметра, лежащие в интервале от 1,001 до 1,002 см, говорят производственному рабочему, что изделие с диаметром 1,0012 см соответствует допуску, но они не помогают ему производить меньше дефектных изделий и увеличивать объем производства, как если бы он использовал статистические методы.
85
Содержание данного раздела было темой, которую д-р Джозеф Джуран обсудил много лет тому назад на конференции отделения Метрополитен Американского общества контроля качества (Нью-Йорк). Здесь я цитирую работу Ирвинга Бэрра «Определение желаемого распределения предпочтительнее максимального и минимального пределов», Industrial Quality Control 24, no. 2 (1967): 94–101. – Прим. авт.