Взятие сто четвертого(Повесть)
Шрифт:
Во всяком случае, разговаривая с физиками, я никогда не замечал, чтобы они были более строги, чем наши школьные преподаватели, менее остроумны, чем газетные фельетонисты, и более глубокомысленны, чем философы или шоферы такси.
Для пущей убедительности могу сообщить, что по субботам и воскресеньям они танцуют в дубненском Доме ученых до четырех утра, причем самые разные танцы, вот только не ручаюсь, что в число танцоров входят все девять авторов 104-го элемента.
Полагаю, теперь вы достаточно подготовлены к тому, чтобы без страха ринуться в самую суть физических проблем.
Есть несколько типов экспериментаторов.
Одни пользуются известной методикой, но умеют делать гениальные выводы. Другие, наоборот, создают новую методику — какую-нибудь водородную камеру —
Так работали Георгий Флеров и его группа.
Три года подряд, изо дня в день, они приходили в лабораторию, сидели там «от» и «до», а чаще — больше, и накапливали результат. Открытие не явилось к ним прекрасным видением из циклотрона. Они выстругали, выпилили, выточили, сработали свой 104-й элемент, и в этом смысле термин «открытие» подходит не очень точно. Тем более что задача сводилась не к тому, чтобы «открывать» 104-й, а к тому, чтобы «получить» его в натуре, тем самым подтвердив предсказание теоретиков.
Это была титаническая работа, и я не решаюсь ответить на вопрос, какой из трех экспериментаторских путей сложнее и почетней.
Кстати, находясь в Дубне, я уловил некий антагонизм между теоретиками и экспериментаторами. Впрочем, «антагонизм» — это, пожалуй, слишком крепко сказано, даже если учесть довольно сильные выражения, допускаемые «сторонами» в адрес друг друга. Монтекки и Капулетти из них все равно не получатся, потому что предмет их забот, по существу, один. Но противоречия есть. Я слышал от некоторых экспериментаторов, что они, мол, по сравнению с теоретиками, стоят где-то на грани с реальностью, между тем теоретики совершенно ушли в абстракцию и почему-то считают себя из-за этого «этажом выше». «Хотя, — добавлялось после недолгого раздумья, — им действительно легче живется на белом свете. Работа у них чистая, спокойная, проходящая в тиши кабинетов, и времени у них больше — не то что у бедных экспериментаторов, которым только и остается, что ставить свои нудные грязные опыты». Что же касается обдумывания результатов, подсчета да подытоживания, да изложения с блеском, да обыгрывания, то у теоретиков остается на это «вагон» времени, а у экспериментаторов — всего «тележка». «На пустом месте теоретики могут создать феерическую работу, но попробуйте вытащить из логова любого из них — кто окажется более в курсе современных научных идей? То-то!» — торжество в глазах экспериментатора, произнесшего такую тираду.
Приходилось мне слышать и более резкие выражения, в которых звучали обида и претензия. «Они считают нас серыми лошадками, — слышал я, — а сами себе кажутся седоками в хромовых сапогах». «Они искусственно создают темные места в науке, считая, что только так ее можно двигать вперед». «Без нас они были бы как без рук и без ног, и не могут нам этого простить». «Вы знаете слова Менделеева: „Оно, конечно, сказать все можно, а ты пойди демонстрируй!“? Менделеев был умный человек…»
Я имел дело с экспериментаторами — естественно, их точка зрения превалирует в этом рассуждении, хотя я не склонен ее полностью разделять. В развитии теоретических и экспериментальных работ нынче явно наметилось несоответствие, причем не в пользу экспериментаторов. Но они в этом не виноваты, есть объективные причины, приведшие к их отставанию, поскольку одновременно с общим развитием физики закономерно усложнилась техника эксперимента. Если раньше великие физики практически не знали деления на теоретиков и экспериментаторов и, положим, Максвелл мог прекраснейшим образом сам проверять свои теоретические выводы экспериментально, то теперь он поднял бы руки кверху и произнес «сдаюсь», если бы ему пришлось иметь дело со сложнейшим современным экспериментальным оборудованием.
В самом деле, нынешний экспериментатор должен иметь определенную материальную базу: и помещение, и специальные материалы, и разнообразные приборы, и всевозможные ускорители, реакторы, ожижители и так далее, — одному Максвеллу просто физически невозможно было бы поставить и осуществить эксперимент! Он привык работать, как и нынешние теоретики, в «гордом одиночестве», сидя за письменным столом, и, кроме тетради, ручки, настольной лампы и абсолютного
покоя, ему ничего не было нужно.Известно, например, что Эйлер, став слепым, продолжал делать свои сложные математические расчеты в уме.
Что из сказанного следует? Да то, что в сложившихся условиях работа экспериментаторов по сравнению с теоретиками стала более тяжелой и менее «рентабельной». Это обстоятельство отметил еще в 1962 году академик П. Л. Капица, выступая на общем собрании Академии наук СССР. Он сказал тогда, что экспериментатор в случае неудачи теряет не два-три месяца, как теоретик, а год или полтора, то есть то время, которое обычно уходит на завершение эксперимента. Кроме того, работа экспериментатора требует и понимания теории, и знания техники, и умения практически пользоваться оборудованием, и, наконец, коллективизма, при котором результат зависит уже не только от самого себя, но и от всего коллектива. В итоге признание экспериментатора как ученого, достигшего научной степени, происходит значительно позже, чем физика-теоретика. Чтобы представить диссертацию к защите, экспериментатор должен искусственно выделить «свою часть» из коллективной работы, что в корне противоречит самому духу коллективизма. «Все это, — сказал П. Л. Капица, — отталкивает многих людей от экспериментальной работы».
Для того чтобы ликвидировать возникшее несоответствие, П. Л. Капица предлагал с помощью разных мер поставить экспериментаторов в такие условия, в которых их работа стала бы по крайней мере так же привлекательна, как работа теоретиков. Меры эти поощрительные, построенные на материальных и моральных факторах. Например, П. Л. Капица считал, что надо организовать тематические премии для экспериментальных работ, надо облегчить получение научных степеней на основе одной и той же коллективной диссертации сразу несколькими работниками и т. д.
Не согласиться просто невозможно. Особенно если учесть, что с каждым новым днем и годом экспериментальная работа будет все более и более усложняться, что затяжка с решением этого вопроса чревата неприятными последствиями, что теория может так крепко оторваться от практики, что привязать их потом друг к другу будет много сложнее, чем сегодня не дать им разойтись.
Но вернемся к 104-му. Он лежал на самом верхнем этаже огромного здания, сложенного из неизвестностей. Флеров и его группа шли ощупью, по ступенькам, не пропуская ни одной, часто останавливаясь, чтобы перевести дыхание, и даже возвращаясь. Иногда им удавалось проскочить несколько этажей сразу — в лифте, — когда приходило гениальное озарение и фейерверочно вспыхивали идеи. Правда, без достижения последнего этажа эти лифты теряли свой смысл, как становится бессмысленной самая совершенная тренировка спортсмена, если не приводит к победе. Но вместе с успехом они приобретали музейную ценность.
И приобрели.
Когда в 1869 году Менделеев сформулировал периодический закон и построил свою знаменитую таблицу, он смог поселить в ней лишь шестьдесят три известных в ту пору элемента. Остальным он, если угодно, обеспечил в таблице постоянную прописку.
Сегодня мы знаем более ста жильцов.
Откуда взялись новые? Их нашли. Но трудность розысков в разное время была разной.
Дело в том, что часть элементов могла естественно существовать в природе, и лишь человеческое неумение их обнаружить мешало им получить заветный ордер на вселение. Другая часть элементов существовать в природе не могла, так как, образовавшись, скоро распадалась. Этим свойством обладали все трансурановые, то есть радиоактивные, элементы, прописанные в коммунальной таблице за ураном. Получить их можно было только искусственным путем, и тут уж никакие зоркие глаза и тонкое чутье кладоискателей помочь не могли: успех зависел в основном от уровня техники.
Кстати, физики часто употребляют термин «доурановые» и «послеурановые» элементы. Это звучит у них, как «до» и «после» нашей эры, — довольно символично, если иметь в виду эры развития физики.
Итак, что значит искусственным путем получить новый элемент? Это значит изменить количество протонов и нейтронов в атомном ядре так, чтобы ядро изменило свой атомный вес и порядковый номер. Если взять, например, ядро плутония (атомный вес — 94), влить в него ядро неона (атомный вес — 10), а потом заставить выпустить четыре нейтрона, то и получится 104-й элемент.