Чтение онлайн

ЖАНРЫ

Язык программирования Python
Шрифт:

Класс, получаемый при множественном наследовании, объединяет поведение своих надклассов, комбинируя стоящие за ними абстракции.

Использовать множественное наследование следует очень осторожно, а необходимость в нем возникает реже одиночного.

Множественное наследование можно применить для получения класса с заданными общедоступными методами, причем методы задает один родительский класс, а реализуются они на основе методов второго класса. Первый класс может быть полностью абстрактным.

Множественное наследование применяется для добавления примесей (mixins). Примесь — специально сконструированный

класс, добавляющий в некоторый класс какую–либо черту поведения (привнесением атрибутов). Примеси обычно являются абстрактными классами.

Изредка множественное наследование применяется в своем основном смысле, когда объекты класса, получающегося в результате множественного наследования, предназначаются для использования в качестве объектов всех родительских классов.

В случае с Python наследование можно считать одним из способов собрать нужные комбинации методов в серии классов:

Листинг

class A:

def a(self): return 'a'

class B:

def b(self): return 'b'

class C:

def c(self): return 'c'

class AB(A, B):

pass

class BC(B, C):

pass

class ABC(A, B, C):

pass

Впрочем, собрать нужные методы можно и по–другому, без использования наследования:

Листинг

def ma(self): return 'a'

def mb(self): return 'b'

def mc(self): return 'c'

class AB:

a = ma

b = mb

class BC:

b = mb

c = mc

class ABC:

a = ma

b = mb

c = mc

Порядок разрешения методов

В случае, когда надклассы имеют одинаковые методы, использование того или иного метода определяется порядком разрешения методов (method resolution order). Для «новых» классов узнать этот порядок очень просто с помощью атрибута __mro__:

Листинг

>>> str.__mro__

(<type 'str'>, <type 'basestring'>, <type 'object'>)

Это означает, что сначала методы ищутся в классе str, затем в basestring, а уже потом — в object.

Для «классических» классов порядок несколько отличается от порядка разрешения методов в «новых» классах. Нужно стараться избегать множественного наследования или применять его очень аккуратно.

Агрегация

Контейнеры

Под контейнером обычно понимают объект, основным назначением которого является хранение и обеспечение доступа к другим объектам. Контейнеры реализуют отношение «HAS–A» («ИМЕЕТ») между объектами. Встроенные типы, список и словарь — яркие примеры контейнеров. Можно построить собственные типы контейнеров, которые будут иметь свою логику доступа к хранимым объектам. В контейнере хранятся не сами объекты, а ссылки на них.

Для практических нужд в Python обычно хватает встроенных контейнеров (словаря и списка), но если это необходимо, можно создать и другие. Ниже приведен класс Стек, реализованный на базе списка:

Листинг

class Stack:

def __init__(self):

«"«Инициализация стека»""

self._stack = []

def top(self):

«"«Возвратить вершину стека (не снимая)»""

return self._stack[-1]

def pop(self):

«"«Снять со стека элемент»""

return self._stack.pop

def push(self, x):

«"«Поместить

элемент на стек»""

self._stack.append(x)

def __len__(self):

«"«Количество элементов в стеке»""

return len(self._stack)

def __str__(self):

«"«Представление в виде строки»""

return " : ".join(["%s» % e for e in self._stack])

Использование:

Листинг

>>> s = Stack

>>> s.push(1)

>>> s.push(2)

>>> s.push(«abc»)

>>> print s.pop

abc

>>> print len(s)

2

>>> print s

1 : 2

Таким образом, контейнеры позволяют управлять набором (любых) других объектов в соответствии со структурой их хранения, не вмешиваясь во внутренние дела объектов. Узнав интерфейс класса Stack, можно и не догадаться, что он реализован на основе списка, и каким именно образом он реализован с помощью него. Но для использования стека это не важно.

Примечание:

В данном примере для краткости изложения не учтено, что в результате некоторых действий могут возбуждаться исключения. Например, при попытке снять элемент с вершины пустого стека.

Итераторы

Итераторы — это объекты, которые предоставляют последовательный доступ к элементам контейнера (или генерируемым «на лету» объектам). Итератор позволяет перебирать элементы, абстрагируясь от реализации того контейнера, откуда он их берет (если этот контейнер вообще есть).

В следующем примере приведен итератор, выдающий значения из списка по принципу «считалочки» по N:

Листинг

class Zahlreim:

def __init__(self, lst, n):

self.n = n

self.lst = lst

self.current = 0

def __iter__(self):

return self

def next(self):

if self.lst:

self.current = (self.current + self.n — 1) % len(self.lst)

return self.lst.pop(self.current)

else:

raise StopIteration

print range(1, 11)

for i in Zahlreim(range(1, 11), 5):

print i,

Программа выдаст

Листинг

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

5 10 6 2 9 8 1 4 7 3

В этой программе делегировано управление доступом к элементам списка (или любого другого контейнера, имеющего метод pop(n) для взятия и удаления n–го элемента) классу–итератору. Итератор должен иметь метод next и возбуждать исключение StopIteration по завершении итераций. Кроме того, метод __iter__ должен выдавать итератор по экземпляру класса (в данном случае итератор — он сам (self)).

В настоящее время итераторы приобретают все большее значение, и о них много говорилось в лекции по функциональному программированию.

Ассоциация

Если в случае агрегации имеется довольно четкое отношение «ИМЕЕТ» (HAS–A) или «СОДЕРЖИТСЯ–В», которое даже отражено в синтаксисе Python:

Листинг

lst = [1, 2, 3]

if 1 in lst:

то в случае ассоциации ссылка на экземпляр другого класса используется без отношения включения одного в другой или принадлежности. О таком отношении между классами говорят как об отношении USE–A («ИСПОЛЬЗУЕТ»). Это достаточно общее отношение зависимости между классами.

Поделиться с друзьями: