Чтение онлайн

ЖАНРЫ

ЯЗЫК ПРОГРАММИРОВАНИЯ С# 2005 И ПЛАТФОРМА .NET 2.0. 3-е издание

Троелсен Эндрю

Шрифт:

Вызов членов интерфейса на уровне объекта

Теперь, когда у вас есть набор типов, поддерживающих интерфейс Pointy, следующей задачей оказывается доступ я новым функциональным возможностям. Самым простым способом обеспечения доступа к функциональным возможностям данного интерфейса является непосредственный вызов методов на уровне объектов. Например:

static void Main(string[] args) {

 // вызов члена Points интерфейса IPointy.

 Hexagon hex = new Hexagon;

 Console.WriteLine("Вершин: {0}", hex.Points);

 Console.ReadLine;

}

Этот

подход прекрасно работает в данном конкретном случае, поскольку вы знаете, что тип Hexagon реализует упомянутый интерфейс. Однако в других случаях во время компиляции вы не сможете определить, какие интерфейсы поддерживаются данным типом. Предположим, например, что у нас есть массив из 50 типов, соответствующих Shape, но только некоторые из них поддерживают IPointy. Очевидно, что если вы попытаетесь вызвать свойство Points для типа, в котором IPointy не реализован, вы получите ошибку компиляции. Возникает следующий вопрос: "Как динамически получить информацию о множестве интерфейсов, поддерживаемых данным типом?"

Выяснить во время выполнения, поддерживает ли данный тип конкретный интерфейс можно, например, с помощью явного вызова. Если тип не поддерживает запрошенный интерфейс, вы получите исключение InvalidCastException. Чтобы "изящно" обработать эту возможность, используйте структурированную обработку исключений, например:

static void Main(string[] args) {

 …

 // Возможный захват исключения InvalidCastException.

 Circle с = new Circle ("Lisa");

 IPointу itfPt;

 try {

itfPt = (IPointy)c;

Console.WriteLine(itfPt.Points);

 } catch (InvalidCastException e) {

Console.WriteLine(e.Message);

 }

 Console.ReadLine;

}

Итак, можно использовать логику try/catch и надеяться на удачу, но лучше еще до вызова членов интерфейса определить, какие интерфейсы поддерживаются. Мы рассмотрим два варианта такой тактики.

Получение интерфейсных ссылок: ключевое слово as

Второй способ проверить поддержку интерфейса для данного типа предполагает использование ключевого слова as, о котором уже шла речь в главе 4. Если объект можно интерпретировать, как указанный интерфейс, будет возвращена ссылка на интерфейс. Если нет – вы получите null.

static void Main(string[] args) {

 …

 // Можно ли интерпретировать hex2, как IPointy?

 Hexagon hex2 = new Hexagon("Peter");

 IPointy itfPt2 = hex2 as IPointy;

 if (itfPt2 != null) Console.WriteLine("Вершин: {0}", itfPt2.Points);

 else Console.WriteLine("ОЙ! Вершин не видно…");

}

Обратите внимание на то, что при использовании ключевого слова as

не возникает необходимости использовать логику try/catch, поскольку в том случае, когда ссылка оказывается непустой, вы гарантированно будете иметь действительную ссылку на интерфейс.

Получение интерфейсных ссылок: ключевое слово is

Можно также проверить реализацию интерфейса с помощью ключевого слова is. Если соответствующий объект не совместим указанным интерфейсом, будет возвращено значение false. А если тип совместим с интерфейсом, вы можете смело вызвать его члены без использования логики try/catch.

Для примера предположим, что мы изменили массив типов Shape так, что теперь некоторые его члены реализуют IPointy. Вот как с помощью ключевого слова is можно выяснить, какие из элементов в массиве поддерживают этот интерфейс.

static void Main(string[] args) {

 …

 Shape[] s = {new Hexagon, new Circle, new Triangle("Joe"), new Circle("JoJo")};

 for (int i = 0; i ‹ s.Length; i++) {

// Напомним, что базовый класс Shape определяет абстрактный

// член Draw, поэтому все формы могут отображать себя.

s[i].Draw

// Кто с вершинами?

if (s[i] is IPointy) Console.WriteLine("-› Вершин: {0} ", ((IPointy)s[i]).Points);

else Console.WriteLine("-› {0} без вершин!", s[i].PetName);

 }

}

Соответствующий вывод показан на рис. 7.2.

Рис 7.2. Динамическое обнаружение реализованных интерфейсов

Интерфейсы в качестве параметров

Поскольку интерфейсы являются полноценными типами .NET, вы можете конструировать методы, которые будут использовать интерфейсы, как параметры. Для примера предположим, что мы определили другой интерфейс с именем IDraw3D.

// Моделируем возможность отображения типа в пространстве.

public interface IDraw3D {

 void Draw3D;

}

Предположим также, что две из наших трех форм (Circle и Hexagon) сконфигурированы для поддержки этого нового поведения.

// Circle поддерживает IDraw3D.

public class Circle: Shape, IDraw3D {

 …

 public void Draw3D {

Console.WriteLine("3D-отображение окружности!");

 }

}

// Hexagon поддерживает IPointy и IDraw3D.

public class Hexagon: Shape, IPointy, IDraw3D {

 …

 public void Draw3D { Console.WriteLine ("3D-отображение шестиугольника!"); }

}

На рис. 7.3 показана соответствующая обновленная диаграмма классов, полученная в Visual Studio 2005.

Поделиться с друзьями: