Чтение онлайн

ЖАНРЫ

Юный техник, 2002 № 06
Шрифт:

Поколение легких грузовичков этой серии стало первой модернизацией автомобилей SPRINTER. Изменилась их лицевая часть, улучшился интерьер, появились новые узлы и агрегаты, включая расширенное семейство двигателей. Но самое главное, варианты кузовов бортовых грузовичков и фургонов теперь не поддаются исчислению. Низкая и высокая крыши, различные базы и прочее позволяют любому покупателю легко найти подходящую для себя машину. В Европе этот грузовичок занимает почти треть рынка.

Техническая

характеристика:

Грузоподъемность… 1550 кг

Полная масса… 3500 кг

Погрузочная высота… 665 мм

Двигатель… 4-цилиндровый рядный дизель

Мощность двигателя… 79 л.с.

Шины… 225/75R16

Максимальная скорость… 115 км/ч

Радиус поворота… 6400 мм

ПОЛИГОН

Всегда ли верны теоремы?

Трение — древнейший враг машин. На его преодоление тратится половина мощности всех двигателей планеты, почти половина добываемого на земле топлива. Кроме того, трение приводит к износу деталей машин. Это значит, миллионы тонн металла теряются безвозвратно, превращаясь в тончайшую пыль.

Способов борьбы с трением придумано множество, но почти все они сводятся к тому, чтобы отделить трущиеся поверхности друг от друга. Для этого, например, подшипники автомобиля смазывают маслом, а некоторые подшипники морских судов делают из резины и смазывают… водой.

Еще первобытный человек, передвигая тяжелые камни, догадался подкладывать под них катки, ролики. Тем самым трущиеся поверхности разъединялись, и трение скольжения заменялось трением качения. На этом принципе основан шарикоподшипник. Придумал его еще Леонардо да Винчи, а делать научились сто лет назад. Шарикоподшипник по сравнению с масляной или водяной смазкой в десятки раз снижает трение и износ. Но для некоторых машин и этого мало.

Сегодня зубные врачи сверлят зубы при помощи пневматических бормашинок. Их вал вращается от воздушной турбинки со скоростью до 100 000 оборотов в минуту. Все известные шариковые подшипники при таких скоростях мгновенно бы пришли в негодность. Поэтому здесь применяют подшипники, которые смазываются сжатым воздухом. Это не только снижает трение, но и почти совсем устраняет износ. Есть, однако, приборы, для которых и такие подшипники слишком грубы. Речь идет о гироскопических устройствах, которые применяются для точного вождения кораблей, самолетов и ракет. Основа их — волчок, который, благодаря быстрому вращению, способен сохранять в пространстве положение своей оси. Однако малейшее трение способно отклонить ось, и тогда самолет собьется с курса, а ракета пролетит мимо цели.

Лучший способ устранить трение гироскопа — магнитный подвес. Наденьте на карандаш пару кольцевых магнитов, расположив их одноименными полюсами навстречу. Между ними образуется зазор. Поместив их в вакуум, можно было бы полностью избавиться от трения между ними. Но без карандаша или какого-то вала система окажется неустойчива.

Достаточно малейшего смещения одного из магнитов в сторону, как он тотчас же перевернется и прилипнет к другому.

Некогда изобретатели полагали, что следует взять не два магнита, а пять, сто или тысячу, чтобы получилась устойчивая система, однако практическое решение найти очень долго никому не удавалось.

Причину, казалось бы, обнаружили. Еще в 1839 году английский физик С. Ирншоу доказал, что система тел, связанных силовым полем типа электрического или магнитного, но обязательно убывающего обратно пропорционально квадрату расстояния, не может находиться в устойчивом равновесии. Многие восприняли это как запрет и перестали искать устойчивую систему из постоянных магнитов.

И все же магнитный подвес был создан, причем без нарушения теории

Ирншоу.

В 60-е годы в Польше на одной из международных выставок появился большой глобус, бесшумно висящий в воздухе как бы ни на чем (рис. 1).

Это была сенсация, но из нее никто не делал секрета. Глобус был сделан из легкого пластика, а сверху наклеена пластина мягкой стали. Под потолком укрепили электромагнит, лампочку и фотоэлемент. При включении тока электромагнит притягивал глобус, а он при этом пересекал луч фотоэлемента. Возникал сигнал, который тотчас отключал ток от магнита. Глобус начинал падать и переставал загораживать свет. Тогда от фотоэлемента поступал сигнал на включение магнита. Весь этот процесс проходил настолько быстро, что дрожание глобуса заметить было невозможно.

Устройство с бесшумно парящим в воздухе предметом — неплохое украшение для квартиры. Вы можете собрать его самостоятельно по схеме, которую мы опубликуем в приложении к «ЮТ» — журнале «Левша».

Магнитный подвес подобного типа применяется и для подвески роторов гироскопов. Вращающийся с огромной скоростью шарик, висящий в вакуумной камере на невидимых нитях магнитного поля, прекрасно сохраняет положение своей оси вращения, позволяет выводить ракету на цель с отклонением не более десятка метров на тысячу километров полета.

Конечно, в гироскопах ракет магнитный подвес такого типа управляется гораздо более сложной электронной системой. Однако можно сделать его проще. Это стало возможным благодаря работам физика из Томска Г. В. Николаева.

К сожалению, из-за сложного математического аппарата кратко изложить его теорию невозможно. Однако эксперименты, положенные в ее основу, могут быть показаны в школе.

Вот один из них. Возьмите два небольших полосовых магнита, например от мебельных защелок, и положите их параллельно, так, чтобы они притягивались (рис. 2).

Рис. 2

Ничего особенного в этом нет. Но если из них собирать магниты более длинные и также укладывать параллельно, то притяжение между ними по мере роста длины будет ослабевать и даже сменится на отталкивание.

Интересный результат получается, когда короткий магнит приближают к длинному (рис. 3).

Рис. 3

При этом возникает так называемая магнитная потенциальная яма. На большом расстоянии эти два магнита притягиваются. На малом — отталкиваются, но есть такое место, где магниты друг с другом вовсе не взаимодействуют.

Получившаяся устойчивая система из магнитов не противоречит теореме Ирншоу. Ведь здесь расстояния между магнитами малы по сравнению с их размерами. Поэтому силы взаимодействия ослабевают не обратно пропорционально квадрату расстояния, а гораздо медленнее. Но почему сила притяжения одних и тех же магнитов то меняется на отталкивание, то пропадает вообще? Как утверждает Г.В.Николаев, это явление в рамках обычной электродинамики необъяснимо. Оно связано с существованием двух магнитных полей. Одно из них — поле, охватывающее проводник с током, мы изучаем в школе. Но у каждого проводника с током, как установил Ампер, есть еще и слабое продольное магнитное поле. Его современная электродинамика не учитывает, а зря. Оно является причиной многих явлений, в том числе и описанного. Однако это не мешает найти магнитной потенциальной яме техническое применение.

Поделиться с друзьями: