Юный техник, 2008 № 11
Шрифт:
Для передачи электроэнергии из космоса рассматриваются несколько возможных вариантов — от инфракрасных волн до лазерного излучения. Причем энергия будет достигать Земли практически без потерь, несмотря на облачность, подчеркнул Каторгин.
К 2040 году японские ученые планируют вывести на околоземную орбиту первую космическую электростанцию, которая будет снабжать электрической энергией Японские острова. Лидерство Японии в области космической энергетики кажется, по меньшей мере, странным, если вспомнить, прямо говоря, слабые успехи Страны восходящего солнца в освоении космического пространства. Однако государству, на территории которого нет ни залежей нефти,
Тем более что создание космических электростанций уже не кажется невыполнимой задачей. Взять хотя бы основную деталь космических электростанций — солнечные батареи. Тридцать лет назад они были малоэффективными, а сейчас их КПД составляет от 42 до 56 процентов, а стоимость падает с каждым днем. Гигантские полотнища из фотоэлектрических батарей площадью в несколько квадратных километров будут выводиться на околоземную орбиту и раскрываться, скорее всего, уже не космонавтами-монтажниками, а роботами.
Батареи станут собирать солнечную энергию, превращать ее в электрическую и в виде микроволн отправлять на Землю по технологии, известной под названием «беспроволочная передача энергии». Причем микроволны-лучи могут быть настолько слабы, что, пройдя через них, человек не почувствует даже тепла.
Об эффективности же беспроволочного способа передачи энергии говорит хотя бы тот факт, что несколько лет назад японские ученые при помощи микроволн подняли в воздух небольшой самолет. Расположенные в отдаленных районах Земли специальные приемные станции будут собирать микроволны из космоса и переводить их в электрический ток.
Еще в 70-е годы прошлого века предполагалось, что станция будет располагаться на геостационарной орбите высотой в 36 000 км. Она хороша тем, что спутник при этом находится в одной точке над поверхностью Земли, то есть непосредственно над приемной станцией.
Мощность такой станции поначалу должна была составлять порядка 10 гигаватт, а площадь солнечных панелей около 100 кв. км. А общая масса конструкции около 50 000 т. Энергия должна была сбрасываться на Землю по лучу частотой 2,45 гигагерца.
Однако при этом, как показали расчеты, пришлось бы делать весьма солидных размеров приемную антенну на Земле и передающую на самой станции. Причем речь шла о конструкциях примерно 10 км в диаметре. Иначе просто не удалось бы достаточно точно прицелиться энергетическим лучом в заданную точку.
Ныне специалисты отдают предпочтение другому проекту. Сама станция будет располагаться на довольно низкой орбите. И, двигаясь по ней, будет запасать энергию в специальных аккумуляторах-конденсаторах, а, достигнув некой расчетной точки, прицельно сбрасывать пучок на решетку приемной антенны. При этом размеры как передающей, так и приемной антенн удастся уменьшить до вполне приемлемых размеров.
Космические электростанции, способные обеспечить землян электроэнергией, могут появиться на орбите нашей планеты уже через 15–20 лет, полагают современные специалисты.
НОВАЯ ЖИЗНЬ СТАРЫХ ИДЕЙ
Морошка на… Марсе?
Как вы думаете, может ли расти где-то на другой планете морковка? А морошка? А репа?.. А может быть, подобные растения там уже растут?
Американские
ученые активно разрабатывают методику, позволяющую обнаружить инопланетные растения, сообщает читателям Нэнси Дзян, биометеоролог из Годдардовского института космических исследований НАСА в Нью-Йорке. А поводом стало то, что на одной из 200 с лишним планет за пределами Солнечной системы в июле 2007 года было зафиксировано наличие водяных паров. Теперь с помощью спектрального анализа будут искать в атмосфере планет газы биологического происхождения, такие, например, как кислород или аммиак.Второй признак — присутствие особых пигментов, подобных зеленому хлорофиллу земных растений. Причем на разных планетах эти пигменты могут быть разными — синим, красным, оранжевым.
Интерес ученых понятен. Там, где есть растительность, недалеко уж до животной, а может быть, и до разумной жизни! Не случайно 60 лет назад, в 1948 году, член-корреспондент Академии наук СССР Г. А. Тихов подготовил и опубликовал доклад на сенсационную по тем временам тему о растительности на Марсе.
«В тех местах Марса, где Солнце ежедневно всходит и заходит, даже на экваторе температура в течение суток колеблется от плюс 30 до минус 50 градусов, — сообщал ученый. — Однако в полярных областях Марса, где Солнце не заходит в течение большей или меньшей части марсианского полугодия, температура меняется очень незначительно, оставаясь постоянно выше нуля.
Вот эти-то полярные места и являются наиболее благоприятными для растительной жизни на Марсе»…
Далее Г.А. Тихов высказал предположение, что растительность на Марсе должна быть низкорослая. В основном это, вероятно, травы и кустарники зелено-голубого, голубого и даже синего цвета. Некоторое сходство с марсианскими растениями, возможно, имеют наши можжевельник, морошка, мхи, лишаи, другие северные и высокогорные растения.
Основатель астроботаники Г.А.Тихов.
«На Земле тоже есть места, для жизни малопригодные, — тундра, высокогорье, низкие температуры, нехватка кислорода, — рассуждал он. — Но живут же и здесь какие-то растения! Так давайте узнаем — какие именно, за счет чего, как они приспособились к экстремальным условиям. А потом посмотрим, нет ли где подобных же условий и в космосе»…
Эти исследования оказались на стыке ботаники и астрономии. А потому Тихов предложил назвать новую науку «астроботаникой», став, таким образом, ее основоположником.
Так может ли расти морошка, к примеру, на Марсе?
Растительность на Земле зеленая только потому, что энергия спектра солнечного света у поверхности нашей планеты, как известно, достигает максимума на его зелено-голубом участке.
Казалось бы, отражая зеленый цвет, растения не получают самую ценную составляющую света. Это так, но интенсивность фотосинтеза не зависит от общего количества световой энергии, а определяется количеством энергии, приходящейся на один фотон, и общим количеством фотонов.