Астероидно-кометная опасность: вчера, сегодня, завтра
Шрифт:
— «Эфемериды». Программа вычисляет самые разнообразные по типу и точности эфемериды для наблюдений объектов Солнечной системы, а также для задач моделирования их движения. ПС вычисляет наблюдаемые и геометрические параметры, а также оскулирующие элементы орбит заданных объектов.
— «O-C: Сравнение наблюдений и вычислений». Программа сравнивает наблюденные положения и скорости объектов с вычисленными.
— «Кадр». Программа визуализирует видимое движение многих объектов на небесной сфере на фоне звезд, а также позволяет получить списки объектов Солнечной системы и звезд, видимых в заданный момент
времени в заданной площадке небесной сферы или в заданной ограниченной области пространства.
— «Треки». Программа визуализирует видимые пути (треки) многих объектов на небесной сфере на фоне звезд.
— «Орбиты».
— «Опасные объекты». С помощью этой программы можно получить список потенциально опасных объектов для Земли и других больших планет, а также список тесных сближений астероидов с заданной большой планетой в заданном интервале времени.
— «Что наблюдать». Программа позволяет получить список объектов Солнечной системы, которые можно наблюдать в заданную ночь в заданном месте Земли. При этом можно наложить ограничения на минимальные величины блеска, высоты объекта над горизонтом, элонгации и пр.
Таким образом, ПС ЭПОС позволяет пользователю получать как точные эфемериды для множества объектов, так и быструю иллюстрацию их движения в широком временном диапазоне, что несомненно полезно для поддержки существующих и развития новых наблюдательных программ и для обеспечения эфемеридными данными заинтересованных наблюдателей. ПС ЭПОС распространяется на CD-диске.
Каталог АСЗ ИПА РАН содержит данные об астероидах, имеющих перигелийные расстояния, меньшие 1,33 а.е. Исходные данные берутся из публикаций ЦМП. Данные каталога представлены в виде 5 отдельных таблиц: сведения о наблюдениях, орбитальные данные, физические характеристики, обстоятельства сближений, эфемериды. Обстоятельства сближений вычислены для нумерованных планет на интервале до 2050 г., а для ненумерованных — до 2020 г. К каждой таблице применимы следующие функции: исключение колонок, наложение разнообразных условий на колонки, сортировка. Существует возможность просматривать данные как в виде HTML-таблиц, так и в виде текста. Каталог АСЗ ИПА РАН можно использовать как справочное пособие об астероидах, сближающихся с Землей. Доступ к каталогу через интернет можно получить совершенно свободно по адресу(подробнее об истории исследования малых планет в Санкт-Петербурге см. в разделе 3.3).
В Самарском государственном университете создается банк данных эволюции орбит АСЗ. В качестве математической модели, описывающей движение астероида, используются дифференциальные уравнения с учетом гравитационных и релятивистских эффектов в барицентрической системе координат. Эта система из 72 уравнений решалась модифицированным методом Эверхарта 27-го порядка с переменным шагом интегрирования.
Разработано приложение, которое предоставляет возможность просмотреть эволюцию движения любого астероида на любом интервале времени. Эволюции элементов орбит представляются в виде графиков и таблицы. На исследуемом интервале времени составляется таблица тесных сближений астероида с большими планетами Солнечной системы и Луной и строится трехмерная модель Солнечной системы, наглядно показывающая эволюцию движения астероида.
Пользователь может задавать параметры форматирования полученных графиков и таблиц для их лучшей наглядности. Данное приложение сохраняет полученные результаты в виде двоичных файлов. Реализована возможность сохранения таблиц и диаграмм в Microsoft Excel и в виде Web-страницы.
Информационная система электронной обработки данных наблюде ний околоземных объектов в ИНАСАН.
В отделе космической астрометрии ИНАСАН уже на протяжении 3 лет также разрабатывается информационная система для поддержки астрономических исследований. Информационная система разрабатывалась в рамках НИР «ЭГИДА». Система многопользовательская, что является преимуществом для научных организаций. Она состоит из базы данных и клиентского приложения, которое может быть установлено на неограниченное количество компьютеров. К преимуществам информационной системы можно отнести широкий спектр возможностей по статистическому анализу данных, возможности расчета исследуемых величин
сразу для группы объектов, совмещение в одном каталоге всех типов малых тел Солнечной системы (астероидов, комет, метеорных потоков и т. п.).При создании программы использовались возможности визуального программирования, вследствие чего программа имеет дружественный по отношению к пользователю интерфейс. Информационную систему можно использовать как справочное пособие по орбитальным и физическим характеристикам объектов. Программный комплекс предлагает широкие возможности для поиска и обработки данных о малых телах Солнечной системы, предусмотрено выполнение сложных запросов к базе данных и последующая обработка полученных результатов. Например, реализованы модули для кластерного анализа с использованием различных модификаций D-критерия или разработанного в ИНАСАН E-критерия, модули вычисления гипотетических радиантов комет и астероидов, эволюции орбит отдельных астероидов при сближении с планетами и для набора избранных тел и т. п.
В приложениях 3 и 4 приведены списки российских и международных организаций, работающих по проблеме астероидно-кометной опасности и публикующих в сети данные по опасным объектам, в том числе и программы, позволяющие в режиме реального времени вычислять необходимые параметры движения любых известных астероидов и комет.
Глава 7
Определение и уточнение орбит небесных тел и прогноз столкновений
Джентльмены, у вас нет науки, если вы не можете выразить ее в числах.
7.1. Определение предварительной орбиты и ее последующие уточнения. Оценка точности элементов орбиты
Для выделения потенциально опасных астероидов из общего числа АСЗ, для оценки вероятности столкновения их с Землей и предотвращения столкновений первостепенное значение имеют знание параметров движения и оценка их вероятных ошибок.
Как известно, движение тела относительно некоторой инерциальной системы координат полностью определяется действующими на него силами и начальными условиями. В качестве последних обычно выбирают координаты и компоненты скорости в некоторый момент времени или шесть элементов орбиты. Обратная задача заключается в том, чтобы по наблюдаемому движению небесного тела определить начальные условия движения, например элементы орбиты в некоторый момент времени. Так как каждое позиционное наблюдение дает две сферические координаты ( и ), то минимальное количество наблюдений, необходимых для определения шести элементов эллиптической орбиты, равно трем. Орбита, найденная по трем или небольшому числу наблюдений, называется предварительной. Для определения предварительной орбиты большей частью используются методы, основанные на работах Лагранжа, Гаусса и Лапласа [Субботин, 1968; Херрик, 1977; Быков, 1989; Marsden, 1991]. Как правило, при определении предварительной орбиты астероида или кометы учитывается только притяжение Солнца. Возмущающим влиянием больших планет и другими возможными возмущениями в движении тела при этом пренебрегают.
Предварительная орбита имеет невысокую точность как из-за ошибок наблюдений, на основе которых она определена, так и из-за пренебрежения действующими на тело силами. Однако определение предварительной орбиты является необходимым этапом, поскольку оно позволяет вычислить эфемериду тела для продолжения наблюдений в ближайшие дни и не потерять объект. Если в дальнейшем удается провести дополнительные наблюдения или найти в каталогах наблюдения, принадлежащие тому же телу, то предварительная орбита подвергается исправлению, или уточнению, с учетом старых и новых наблюдений. При этом уже учитываются возмущения, вызываемые другими телами Солнечной системы помимо Солнца, и, возможно, иные возмущения.
Уточнение параметров движения чаще всего выполняется по методу наименьших квадратов (МНК). Напомним основные положения этого метода и некоторые формулы, используемые в дальнейшем.
Вновь наблюдаемые координаты тела, как правило, заметно отличаются от тех координат, которые вычисляются согласно теории движения с первоначально найденными параметрами (элементами орбиты тела). Процесс уточнения предварительной орбиты сводится к тому, чтобы найти такие поправки к исходной системе элементов, которые уменьшали бы рассогласование между наблюденными и вычисленными положениями.