Чтение онлайн

ЖАНРЫ

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Шрифт:

Хокинг и в самом деле настоящий физик-трюкач. Но, пожалуй, самым смелым его ходом была бомба, которую он бросил в мансарде Вернера.

Я не припомню, как была организована его лекция на ЭСТ. Сегодня на своих физических семинарах Стивен молча сидит в кресле, пока бестелесный компьютерный голос воспроизводит заранее сделанную запись. Этот компьютерный голос стал фирменным знаком Стивена; при всей своей монотонности он индивидуален и полон юмора. Но тогда, он, возможно, говорил сам, а Мартин переводил. Как бы то ни было, бомба всей своей мощью обрушилась на нас с Герардом.

Стивен заявил, что «информация теряется при испарении чёрной дыры», и, хуже того, он, похоже, это доказал. Если это правда, поняли мы с Герардом, то разрушены самые основания нашей научной области. Как восприняли эту новость остальные в вернеровской мансарде? Как Койот из мультфильма про Дорожного Бегуна [15] , проскочивший с разбегу край утёса: земля под ногами уже исчезла, но они этого ещё не поняли.

О космологах поговаривают,

что они часто ошибаются, но никогда не сомневаются. Если так, то Стивен лишь наполовину космолог: он никогда не сомневается, однако практически никогда не ошибается. И всё же в данном случае он ошибся. Но его «ошибка» оказалась одной из самых продуктивных в истории физики и могла бы привести к коренной смене парадигмы в представлениях о природе пространства, времени и материи.

15

Мультсериал «Хиртый Койот и Дорожный Бегун» (оригинальное название Road Runner) выходил с 1949 года. В каждой серии Койот пытается с помощью разных уловок поймать стремительного Дорожного Бегуна, напоминающего страуса, и каждый раз терпит неудачу. — Прим. перев.

Лекция Стивена была в тот день последней. Ещё около часа после неё Герард стоял, озабоченно разглядывая диаграмму на вернеровской доске. Все остальные разошлись. Я продолжал наблюдать за мрачным выражением на лице Герарда и довольной улыбкой Стивена. Почти ничего не было сказано. Это был момент высочайшего напряжения.

На доске была диаграмма Пенроуза, представляющая чёрную дыру. Горизонт — граница чёрной дыры — был изображён пунктирной линией, а сингулярность в её центре — грозной, зазубренной. Линии, ведущие внутрь сквозь горизонт, представляли биты информации, падающие под горизонт в сингулярность. Линий, ведущих назад, не было. Согласно Стивену, эти биты были необратимо потеряны. И что ещё хуже, Стивен доказал, что чёрные дыры в конце концов испаряются и исчезают, не оставляя никаких следов того, что в них упало.

Теория Стивена шла ещё дальше. Он утверждал, что вакуум — пустое пространство — заполняют бесчисленные «виртуальные» чёрные дыры, которые возникают и прекращают существование столь быстро, что мы этого не замечаем. Под влиянием этих виртуальных чёрных дыр, утверждал он, информация стирается, даже если в окрестностях нет ни одной «реальной» чёрной дыры.

В главе 7 вы узнаете, что в точности означает понятие «информация» и что означает её потерять. А пока просто поверьте мне: это была полная катастрофа. Мы с 'т Хоофтом это знали, но все остальные, кто услышал об этом в тот день, реагировали вяло: «Ну да, в чёрных дырах пропадает информация». Сам Стивен был воодушевлён. Для меня самым трудным при работе со Стивеном было постоянное раздражение, которое я чувствовал из-за его самодовольства. Потеря информации — это нечто такое, что просто не могло быть правдой, но Стивен отказывался это видеть.

Конференция завершилась, и мы отправились по домам. Стивену и Герарду предстояла дорога в Кембриджский и Утрихтский университеты соответственно; а мне — лишь 40-минутная поездка на юг по 101-му шоссе до Пало-Альто и Стэнфордского университета. Мне было трудно сконцентрироваться на дороге. В этот холодный январский день каждый раз, останавливаясь или тормозя, я начинал рисовать диаграмму с вернеровской доски на заиндевевшем лобовом стекле.

Вернувшись в Стэнфорд, я рассказал об утверждении Стивена своему другу Тому Бэнксу. И мы с ним тщательно всё обдумали. Чтобы получше во всём разобраться, я даже пригласил одного бывшего ученика Стивена приехать в Южную Калифорнию. Мы с большим недоверием относились к утверждению Стивена, но какое-то время сами не могли понять почему. Что такого плохого в потере какого-то количества информации внутри чёрной дыры? Потом до нас дошло. Потеря информации — это то же самое, что порождение энтропии. А порождение энтропии означает генерацию тепла. Виртуальные чёрные дыры, существование которых столь вольно допустил Стивен, вели бы к выработке тепла в пустом пространстве. Совместно с ещё одним коллегой, Майклом Пескином, мы сделали оценку, основанную на теории Стивена. Оказалось, что если он прав, то пустое пространство за малую долю секунды должно разогреться до тысячи миллиардов миллиардов миллиардов градусов. Хотя я знал, что Стивен ошибается, я не мог обнаружить брешь в его рассуждениях. Возможно, именно это и раздражало меня больше всего.

Последовавшая затем Битва при чёрной дыре являла собой нечто большее, нежели полемика между физиками. Это была также битва идей или, возможно, битва между фундаментальными принципами. Принципы квантовой механики и общей теории относительности всегда были на ножах друг с другом, и никто не знал, способны ли они сосуществовать. Хокинг — релятивист, верящий прежде всего в эйнштейновский принцип эквивалентности. Мы с ’т Хоофтом — квантовые физики, уверенные, что законы квантовой механики не могут нарушаться без подрыва самих основ физики. В следующих трёх главах я опишу диспозицию сторон перед Битвой при чёрной дыре, изложив основы физики чёрных дыр, общей теории относительности и квантовой механики.

2

Тёмная звезда

Горацио, — на небе и земле

Есть многое, что и не снилось даже Науке.

Уильям Шекспир, Гамлет [16]

Первый

намёк на что-то подобное чёрной дыре появился в конце XVIII века, когда великий французский физик Пьер-Симон де Лаплас и английский клирик Джон Митчел высказали одну и ту же замечательную мысль. Все физики тех дней серьёзно интересовались астрономией. Всё, что было известно о небесных телах, выяснялось благодаря свету, который они испускали или, как в случае с Луной и планетами, отражали. Хотя ко времени Митчела и Лапласа со смерти Исаака Ньютона прошло уже полвека, он всё равно оставался самой влиятельной фигурой в физике. Ньютон считал, что свет состоит из крошечных частиц — корпускул, как он их называл, — а раз так, то почему бы свету не испытывать действие гравитации? Лаплас и Митчел задумались, может ли существовать звезда, столь массивная и плотная, что свет не сможет преодолеть её гравитационное притяжение. Должны ли такие звёзды, если они существуют, быть абсолютно тёмными и потому невидимыми?

16

Перевод П. Гнедича. — Прим. перев.

Может ли снаряд [17] — камень, пуля или хотя бы элементарная частица — вырваться из гравитационного притяжения Земли? С одной стороны — да, с другой — нет. Гравитационное поле массы нигде не заканчивается; оно тянется бесконечно, становясь всё слабее и слабее по мере увеличения расстояния. Так что брошенный вверх снаряд никогда полностью не избавится от земного притяжения. Но если снаряд брошен вверх с достаточно большой скоростью, он будет удаляться вечно, поскольку убывающая гравитация слишком слаба, чтобы развернуть его и притянуть назад к поверхности. В этом смысле снаряд может вырваться из земного тяготения.

17

В оригинале употреблено слово «projectile» (снаряд — Прим. перев.), и к нему дано следующее примечание: «The American Heritage Dictionary of the English Language (4-я ред.) определяет projectile как „выстреленный, брошенный или иным образом приведённый в движение объект, например пуля, не обладающий способностью к самодвижению“.» Может ли снаряд (projectile) быть отдельной частицей света? Согласно Митчелу и Лапласу, ответ будет утвердительным.

Даже самый сильный человек не имеет шансов выбросить камень в открытый космос. Высота броска профессионального бейсбольного питчера может достигать 70 метров, это около четверти высоты Эмпайр-стейт-билдинг. Если пренебречь сопротивлением воздуха, пуля, выпущенная из пистолета, могла бы достичь высоты 5 километров. Но существует особая скорость — называемая скоростью убегания [18] , — которой едва хватает, чтобы вывести объект на вечно удаляющуюся траекторию. Начав движение с любой меньшей скоростью, снаряд упадёт обратно на Землю. Стартовав с большей скоростью, он уйдёт на бесконечность. Скорость убегания для поверхности Земли составляет 40 000 км/ч (11,2 км/с) [19] .

18

Скорость убегания также называют второй космической. Первой космической скоростью считается та, которой хватает для выхода на круговую орбиту вблизи поверхности Земли. — Прим. перев.

19

Представление о скорости убегания — это идеализация, в которой пренебрегается такими эффектами, как, скажем, сопротивление воздуха, из-за которого объекту могла бы потребоваться куда более высокая скорость.

Давайте временно станем называть звездой любое массивное небесное тело, будь то планета, астероид или настоящая звезда. Земля — это просто маленькая звезда, Луна — ещё меньшая звезда и т. д.

По ньютоновскому закону тяготения, гравитационное воздействие звёзды пропорционально её массе, так что совершенно естественно, что и скорость убегания тоже зависит от массы звезды. Но масса — это только полдела. Другая половина — это радиус звезды. Представьте себе, что вы стоите на земной поверхности и в это время некая сила начинает сжимать Землю, уменьшая её размеры, но без потери массы. Если вы остаётесь на поверхности, то сжатие будет приближать вас ко всем без исключения атомам Земли. При сближении с массой воздействие её гравитации усиливается. Ваш вес — функция гравитации — будет возрастать, и, как нетрудно догадаться, преодолевать земное тяготение будет всё труднее. Этот пример иллюстрирует фундаментальную физическую закономерность: сжатие звёзды (без потери массы) увеличивает скорость убегания.

Теперь представьте себе прямо противоположную ситуацию. По каким-то причинам Земля расширяется, так что вы удаляетесь от массы. Тяготение на поверхности будет становиться слабее, а значит, из него легче вырваться. Вопрос, поставленный Митчелом и Лапласом, состоял в том, может ли звезда иметь такую большую массу и столь малый размер, чтобы скорость убегания превзошла скорость света.

Когда Митчел и Лаплас впервые высказали эти пророческие мысли, скорость света (обозначаемая буквой c) была известна уже более ста лет. Датский астроном Оле Рёмер в 1676 году определил, что она составляет колоссальную величину — 300 000 км (это примерно семь оборотов вокруг Земли) за одну секунду:

Поделиться с друзьями: