Чтение онлайн

ЖАНРЫ

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Шрифт:

Стратегия Гейзенберга была ярким примером того образа мысли, который сделает дополнительность столь убедительной. Как и Эйнштейн, он стал мысленным экспериментатором. Как, спрашивал он, можно было бы на практике попытаться измерить одновременно положение и скорость электрона?

Он начал с того, что надо измерить положение в два разных момента времени, чтобы из этих данных вывести скорость. Более того, надо измерить положение, не возмущая движение электрона, в противном случае возмущения могут исказить измерение первоначальной скорости.

Самый прямой способ измерить положение объекта — посмотреть на него. Другими словами, направить на него свет и по отражённому свету определить положение. В действительности наши глаза и мозг имеют специальную встроенную систему для определения положения объектов по их образам на сетчатке глаза. Это одна из «аппаратных» возможностей, которыми нас наделила эволюция.

Гейзенберг представил, что смотрит на электрон в микроскоп.

Идея

была в том, чтобы очень аккуратно коснуться электрона световым лучом, так аккуратно, чтобы толчок не изменил его скорость, а затем сфокусировать луч и построить изображение. Но Гейзенберг обнаружил, что попался в ловушку свойств света. Прежде всего, рассеяние света одним электроном — это задача для корпускулярной теории электромагнитного излучения. Даже при самом аккуратном обращении с электроном Гейзенберг не мог попасть в него менее чем одним фотоном. Этот фотон должен быть очень слабым, то есть иметь очень низкую энергию. Столкновение с энергичным фотоном вызвало бы нежелательный сильный толчок.

Все изображения, созданные волнами, по своей природе размыты, и чем больше длина волны, тем менее резкой становится картинка. Радиоволны имеют наибольшую длину волны — от 30 сантиметров и более. Они дают замечательные изображения астрономических объектов, но если попробовать снять портрет в радиоволнах, он выйдет совсем нечётким.

Микроволны — следующие в направлении более коротких волн. Портрет, построенный сфокусированными 10-сантиметровыми микроволнами, по-прежнему был бы слишком размыт, чтобы различить на нём черты лица. Но когда длина волны уменьшается до пары сантиметров, становятся различимы нос, глаза, рот.

Простое правило: нельзя добиться фокусировки лучше, чем длина волны излучения, которое строит изображение. Размеры деталей лица — несколько сантиметров, и они становятся различимы лишь в более коротких волнах. Когда длина волны уменьшается до десятых долей сантиметра, лицо становится совершенно чётким, хотя, возможно, мелкие прыщики на нём и не будут видны.

Допустим, Гейзенберг хочет получить достаточно чёткое изображение электрона, чтобы увидеть его положение с точностью до микрона [101] . Для этого ему придётся использовать свет с длиной волны меньше микрона.

101

Микрон — это одна миллионная метра. Это примерно соответствует размеру очень маленькой бактерии.

И вот тут ловушка захлопывается. Помните, в главе 4 говорилось, что чем короче длина волны фотона, тем выше его энергия? Например, энергия одного радиоволнового фотона столь мала, что он не окажет на атом почти никакого влияния. Напротив, энергии одномикронного фотона будет достаточно, чтобы возбудить атом, забросив электрон вверх по энергетической лестнице квантовых орбит. Ультрафиолетовый фотон с длиной волны в десять раз меньше будет достаточно энергичен, чтобы вовсе вышибить электрон из атома. Так что Гейзенберг оказался в ловушке. Если он хочет определить положение электрона с высокой точностью, за это надо заплатить цену. Ему придётся использовать очень энергичный фотон, который «толкнёт» электрон и непредсказуемым образом изменит его движение. Если же использовать слабый фотон с небольшой энергией, то лучшее, что можно получить, это очень туманное представление о местоположении электрона. Настоящая уловка-22 [102] .

102

В романе «Уловка-22» американского писателя Джозефа Хеллера описана ситуация, когда военный пилот может быть освобождён от службы, если он сошёл с ума, но он должен сам написать заявление об этом, которое официально (согласно бюрократической инструкции, известной как «уловка-22») рассматривается как доказательство его психического здоровья. В англоязычном мире выражение «уловка-22» стало нарицательным для обозначения абсурдной безвыходной ситуации. — Прим. черев.

Возможно, у вас возникнет вопрос: а можно ли вообще измерить скорость электрона? Ответ — можно. Для этого нужно измерить его положение дважды, но с очень низкой точностью. Например, можно использовать длинноволновый фотон, чтобы получить очень размытый образ, а затем повторить эту операцию спустя очень длительное время. Измеряя два размытых образа, можно точно определить скорость, но ценой потери точности определения положения.

Что бы ни придумывал Гейзенберг, ему никак не удавалось одновременно определить положение и скорость электрона. Я

представляю себе, как он и, конечно, его наставник Бор стали задумываться, есть ли вообще какой-то смысл считать, что электрон обладает одновременно положением и скоростью. Согласно философии Бора, электрон можно описать как имеющий положение, которое можно точно измерить, используя очень коротковолновый фотон, или можно описать его как имеющий скорость, измеримую с помощью длинноволновых фотонов, но не как то и другое сразу. Измерение одной характеристики препятствует измерению другой. Бор выразил это, сказав, что два типа знания — положение и скорость — это взаимно дополнительные аспекты электрона. И конечно, в рассуждениях Гейзенберга нет ничего специфичного именно для электрона; они в той же мере приложимы к протону, атому или шару для боулинга.

История про графа, императора и Стива кажется внутренне противоречивой. Но наблюдение битов информации внутри чёрной дыры и наблюдение их вовне горизонта несовместимы точно так же, как несовместимы друг с другом измерения положения и скорости. Никто не может быть одновременно и вне, и внутри горизонта. По крайней мере, это было утверждение, которое я собирался сделать в Санта-Барбаре.

Санта-Барбара

Чёрные дыры реальны. Вселенная полна ими, и они относятся к числу самых впечатляющих и неистовых космических объектов. Но в 1993 году на конференции в Санта-Барбаре большинство физиков не слишком интересовались астрономическими чёрными дырами. Их больше заботили не телескопические наблюдения, а мысленные эксперименты. И информационный парадокс наконец привлёк к себе самое серьёзное внимание.

Конференция была скромной — пожалуй, не большее сотни участников. Когда я вошёл в аудиторию, то увидел множество знакомых лиц. С краю сидел Стивен в своём инвалидном кресле. Якоб Бекенштейн, с которым я никогда прежде не встречался, находился в центре аудитории. Местная команда — Стив Гиддингс, Джо Полчински, Энди Строминджер и Гэри Хоровиц — вся была на виду. Им предстояло сыграть большую роль в грядущей революции, но тогда они были противниками, одураченными пехотинцами армии информационных лузеров [103] . Справа в первом ряду сидел Герард т' Хоофт, готовый к битве.

103

Тут игра слов: information losers можно понимать и как «информационных неудачников», и как «теряющих информацию», то есть придерживающихся взглядов Хокинга. — Прим. перев.

Лекция Хокинга

Вот что я запомнил из выступления Хокинга. Стивен сидел, неудобно развалившись в своём колёсном кресле, голова его была слишком тяжела, чтобы держать её прямо, все остальные замолкли в напряжённом ожидании. Он находился на правой стороне сцены, откуда ему был виден большой проекционный экран, а сам он мог следить за аудиторией. К этому времени Стивен утратил возможность говорить собственным голосом. Его электронный голос вещал заранее записанный текст, а ассистент манипулировал со слайд-проектором, стоя позади него. Проектор был синхронизирован с записанным сообщением, и непонятно, что там вообще делал ассистент.

Несмотря на механический тембр, его голос был полон личного звучания. А улыбка Стивена демонстрировала полную уверенность и убеждённость. В его выступлениях есть загадка: как присутствие неподвижного хрупкого тела вдыхает столько жизни в мероприятия, которые в ином случае казались бы скучными? Едва заметная мимика Стивена несёт такой магнетизм и харизму, какие мало у кого встречаются.

Сам доклад не был особо запоминающимся, по крайней мере если говорить о его содержании. Стивен рассказывал о том, о чём и собирался и о чём я говорить не хотел, — о CGHS-теории и о том, как CGHS её развили (он великодушно упомянул RST за найденную ошибку). Его основное сообщение состояло в том, что если корректно проделать все выкладки в CGHS, то результаты подтверждают его собственную теорию о том, что информация не может высвечиваться из чёрной дыры. Для Стивена урок CGHS состоял в том, что математика этой теории просто доказывала его точку зрения. Для меня урок был в том, что не только умозрительная картина дефектна, но и математические основания квантовой гравитации, по крайней мере в том виде, в каком они вошли в CGHS, внутренне противоречивы.

Самым неожиданным в докладе Стивена стал последовавший за ним период вопросов и ответов. Один из организаторов конференции поднялся на сцену и предложил аудитории задавать вопросы. Обычно вопросы бывают техническими, и порой они оказываются довольно длинными, поскольку спрашивающий хочет показать, что он понимает суть дела. Но затем в аудитории повисает мёртвая тишина. Сотня поклонников превращается в молчаливых монахов в странно затихшем соборе. Стивен сочиняет ответ. Метод, которым он коммуницирует с внешним миром, удивителен. Он не может говорить или поднять руку, чтобы подать знак. Его мускулы настолько атрофированы, что вряд ли могут произвести хоть какое-то усилие. У него не хватает ни сил, ни координации, чтобы печатать на клавиатуре. Если память мне не изменяет, в то время он подавал сигналы, слегка надавливая на джойстик.

Поделиться с друзьями: