Чтение онлайн

ЖАНРЫ

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Шрифт:

Ответ Эйнштейна, повторённый клоуном: этого нельзя определить. «Что? — спросил жонглёр. — Конечно, это можно сделать. Не вы ли только что сказали мне, что вас прижимает к спинке кресла?» — «Да, — отвечает клоун, — точно также, как если бы кто-то приподнял нос вагона так, чтобы назад вас тянула гравитация». Эйнштейн ухватился за эту идею: невозможно отличить ускорение от воздействия силы тяжести. У пассажира нет способа узнать, действительно поезд начал движение или к спинке сиденья его прижимает гравитация. Из этого парадокса и противоречия родился принцип эквивалентности:

Воздействие гравитации и ускорения неотличимы друг от друга.

Влияние гравитации на любую физическую систему в точности такое же, как и влияние ускорения.

Вновь и вновь мы видим одну и ту же картину. Рискуя впасть в некоторое преувеличение, можно сказать: крупнейшие прорывы

в физике свершились благодаря мысленным экспериментам, которые обнаруживали противоречия между самыми глубокими принципами. И в этом отношении сегодня ничего не изменилось по сравнению с прошлым.

Столкновение

Вернёмся к исходному вопросу, поставленному в начале этой главы: почему нас вообще должна волновать потеря информации при испарении чёрной дыры?

Шли дни и недели после встречи в мансарде Вернера Эрхарда, и до меня стало доходить, что Стивен Хокинг дотянулся до столкновения принципов, способного конкурировать с великими парадоксами прошлого. Что-то очень важное в наших фундаментальных представлениях о пространстве и времени серьёзно не в порядке. Было очевидно — Хокинг сам это сказал, — что принцип эквивалентности и квантовая механика оказались на встречных курсах, ведущих к столкновению. Парадокс мог обрушить всю конструкцию, а мог примирить теории, принеся новое глубокое понимание обеих.

У меня это столкновение вызвало непереносимый зуд, но он оказался не слишком заразным. Стивен, казалось, был удовлетворён выводом о потере информации, и, похоже, мало кого ещё тревожил этот парадокс На протяжении десятилетия, с 1983 по 1993 год, эта успокоенность сильно меня раздражала. Я просто не мог понять, как все, и в первую очередь Стивен, могут не замечать, что примирение принципов квантовой механики и теории относительности — это величайшая задача нашего поколения и прекрасный шанс сравняться в достижениях с Планком, Эйнштейном, Гейзенбергом и другими героями прошлого. Я чувствовал, что Стивен совершенно не понимает глубины своего собственного вопроса. Для меня стало чем-то вроде навязчивой идеи убедить Стивена и других (но особенно Стивена), что цель не в том, чтобы отвергнуть квантовую механику, а в том, чтобы согласовать её с теорией чёрных дыр.

Мне казалось очевидным, — и я уверен, что Стивен, Герард 'тХоофт, Джон Уилер и почти любой знакомый релятивист, космолог или струнный теоретик с этим согласится, — что иметь две несовместимые теории природы интеллектуально нетерпимо и что общая теория относительности должна быть сделана совместимой с квантовой механикой. Однако физики-теоретики — это довольно вздорная компания [89] .

13

Патовая ситуация

89

Недавно я был сильно удивлён, обнаружив, что не все с этим согласны. В рецензии на книгу Брайана Грина «Ткань космоса» (русский перевод: Грин Брайан. Ткань космоса. Пространство, время и текстура реальности. — М.: Либроком, 2011. — Прим. перев.) Фриман Дайсон сделал удивительное замечание:

«Как консерватор, я не согласен с тем, что деление физики на отдельные теории для большого и малого неприемлемо. Я совершенно удовлетворён ситуацией, в которой мы прожили последние 80 лет с разными теориями для классического мира звёзд и планет и квантового мира атомов и электронов».

О чём это Дайсон думал? О том, что, подобно древним учёным, жившим до Галилея, мы должны принять две непреодолимо разделённые теории природы? Это консервативно? Или это реакционно? На мой вкус, это звучит попросту нелюбопытно.

Будучи моложе, я не любил, когда люди, особенно на вечеринках и других социальных мероприятиях, интересовались, чем я зарабатываю на жизнь. Не то чтобы я стыдился или смущался. Просто это было слишком трудно объяснить. Чтобы избежать этой темы, я стал говорить: «Я — физик-ядерщик, но мне нельзя эту тему обсуждать». Это работало в шестидесятых и в семидесятых, но сегодня, когда холодная война закончилась, больше не действует.

Я до сих пор испытываю некоторые затруднения с этим вопросом, хотя и по другой причине: я сам не знаю, как правильно на него ответить. Очевидный ответ: «Я физик-теоретик» — обычно ведёт к вопросу: «Каким разделом физики вы занимаетесь?» Вот в этом месте я и впадаю в ступор. Можно бы сказать, что занимаюсь элементарными частицами, но я также много работал с большими объектами, такими как чёрные дыры и вся Вселенная. Я мог бы сказать, что занимаюсь физикой высоких энергий, но иногда приходится работать с самыми низкими энергиями и даже со свойствами пустого пространства. Для того, чем занимаюсь я и большинство моих друзей, просто нет подходящего названия. Меня раздражает, когда меня называют струнным теоретиком; неприятно, что меня классифицируют так узко. Я был бы рад сказать, что работаю с фундаментальными законами природы,

но это звучит слишком претенциозно. Так что обычно я отвечаю, что я физик-теоретик и работаю с множеством разных вещей.

На самом деле до начала 1980-х годов то, над чем я работал, можно было вполне корректно называть физикой элементарных частиц. Однако тогда эта область находилась в определённой стагнации. Стандартная модель элементарных частиц была готова, и наиболее интересные её варианты уже проработаны. Было лишь вопросом времени — долгого времени — дождаться, когда будут построены ускорители для проверки этих вариантов. Так что, по правде говоря, я немного скучал и решил посмотреть, что можно сделать в области квантовой гравитации. Через несколько месяцев работы я стал беспокоиться, что Фейнман был прав — до квантовой гравитации было очень далеко, и не просматривалось никакого пути, по которому можно было бы продвинуться. Мне даже было неясно, в чём, собственно, состоят проблемы. Джон Уилер в своей неподражаемой манере сказал: «Вопрос в том — в чём состоит вопрос?» — и я определённо не видел, как на это ответить. Я был на грани того, чтобы вернуться к привычной физике элементарных частиц, когда совершенно неожиданно Стивен бросил бомбу, которая дала ответ на запрос Уилера: вопрос в том, как нам спасти физику от анархии потерянной информации?

Если физика элементарных частиц переживала тогда стагнацию, то и с квантовой теорией чёрных дыр было то же самое, и так продолжалось около девяти лет. Даже Хокинг ничего не публиковал о чёрных дырах с 1983 по 1989 год. Я смог найти за весь тот период всего восемь журнальных статей, которые затрагивали бы вопрос о потере информации в чёрных дырах. Одну из них написал я сам, все остальные — ’т Хоофт, в основном выражая в них свою веру в S-матрицу, а не в $-матрицу Хокинга.

Причина, по которой я почти ничего не публиковал о чёрных дырах в течение девяти лет после 1983 года, была в том, что я попросту не мог найти никакого подхода к решению головоломки. Я обнаружил, что на протяжении всего этого времени снова и снова задавал себе вопросы и каждый раз сталкивался с непреодолимыми препятствиями. Логика Хокинга была совершенно ясна: горизонт — это просто точка невозврата, и что бы её ни пересекло, оно не может вернуться обратно. Рассуждение было убедительным, но вывод — абсурдным.

Вот как я объяснил проблему на лекции для группы любителей физики и астрономии в Сан-Франциско где-то в 1988 году [90] .

Парадокс очень большой чёрной дыры: лекция, прочитанная в Сан-Франциско

Я хотел бы привлечь ваше внимание к серьёзному конфликту принципов, который впервые описан тринадцать лет назад Стивеном Хокингом. Причина, по которой я сейчас к этому конфликту возвращаюсь, состоит в том, что он указывает на очень серьёзный кризис, который должен быть разрешён прежде, чем мы сможем понять самые глубокие вопросы физики и космологии. Эти вопросы включают, с одной стороны, гравитацию, а с другой — квантовую теорию.

90

Изложенное далее — это примерная реконструкция лекции, основанная на сохранившихся у меня заметках. Я допустил некоторые вольности, чтобы заменить формулы словами. Опус «Не забудьте принять антигравитационные пилюли» предназначался для научно-популярного журнала. Он так он не был доведён до конца, но его сокращённая версия легла в основу лекции, прочитанной в Сан-Франциско.

Вы можете спросить: почему нам вообще надо смешивать эти две области? В конце концов, гравитация имеет дело с очень большим и очень тяжёлым, тогда как квантовая механика управляет миром очень малого и лёгкого. Ничто не может быть тяжёлым и лёгким в одно и то же время, так как же обе теории могут быть важны в одном и том же контексте?

Давайте начнём с элементарных частиц. Как вы все знаете, сила гравитации между электронами и атомным ядром невероятно мала по сравнению с электрическими силами, которые скрепляют атом. То же самое верно, но в ещё большей степени, для ядерных сил, которые удерживают вместе кварки в протоне. Фактически сила гравитации примерно в миллион миллиардов миллиардов миллиардов миллиардов (1040) раз слабее обычных сил. Поэтому ясно, что она не играет существенной роли в атомной и ядерной физике, что уж говорить об элементарных частицах.

Обычно мы думаем об элементарных частицах, таких как электрон, как о бесконечно малых точках в пространстве. Но это не вся правда. Дело в том, что у элементарных частиц достаточно много свойств, которыми они различаются между собой. Некоторые из них имеют электрический заряд, а другие — нет. Кварки обладают, например, барионным числом, изоспином и свойством, которое ошибочно названо цветом. Частицы, подобно волчкам, вращаются вокруг своей оси. Нет оснований считать, что одна точка может обладать такой структурой и разнообразием свойств. Большинство физиков, занимающихся элементарными частицами, уверены, что если мы сможем исследовать частицы в невероятно малых масштабах, то увидим, как устроен их внутренний механизм.

Поделиться с друзьями: