Чтение онлайн

ЖАНРЫ

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Шрифт:

Фотокопирование информации перед самым пересечением горизонта, казалось бы, решает проблему. Рассмотрим сначала наблюдателей, парящих в стороне от чёрной дыры. Они увидят, как хокинговское излучение возвращает каждый бит информации. И они придут к выводу, что нет надобности менять правила квантовой механики. Грубо говоря, они посчитают, что хокинговские идеи относительно разрушения информации ошибочны.

А что можно сказать о свободно падающем наблюдателе? Сразу после пересечения горизонта он оглянется по сторонам и увидит, что ничего не случилось. Все его биты при нём, составляют ту же личность и продолжают падать в окружении тех же предметов, что и раньше. Горизонт, с этой точки зрения, — это не более чем безобидная точка невозврата, так что эйнштейновский принцип эквивалентности полностью соблюдается.

Может ли быть так, что горизонт чёрной дыры покрыт идеально надёжными миниатюрными (возможно,

планковских размеров) копировальными устройствами? Это кажется соблазнительной идеей. Если она верна, то может легко и логично объяснить парадокс Стивена: никакая информация в чёрной дыре не теряется, и будущие физики могут продолжать использовать принципы квантовой механики. Квантовые ксероксы на горизонте каждой чёрной дыры могли бы неожиданно положить конец Битве при чёрной дыре.

Сидни был впечатлён. Он повернулся на своём стуле лицом к аудитории и, в своей характерной манере, объяснил сказанное гораздо более ясно, чем излагал я сам. Стивен, однако, ничего не сказал. Скрючившись, он сидел на своём кресле с широкой улыбкой на лице. Было очевидно, что я знаю нечто, неизвестное Сидни. На самом деле и я и Стивен понимали, что моё объяснение было соломенным чучелом, которое создавалось лишь для того, чтобы его сжечь.

Мы со Стивеном знали, что идеальные устройства копирования квантовой информации противоречат принципам квантовой механики. В мире, управляемом математическими правилами, сформулированными Гейзенбергом и Дираком, идеальная копировальная машина невозможна. Я назвал это утверждение принципом квантовой нексерокопируемости. В новой области физики, называемой квантовой теорией информации, эта же идея называется принципом неклонируемости.

Я торжествующе посмотрел на Коулмена и сказал: «Сидни, квантовый ксерокс невозможен», ожидая, что он немедленно меня поймёт. Но в этот раз его огненно-быстрый мозг протормозил, и мне пришлось подробно всё растолковывать. Объяснение, которое я дал Сидни и другим участникам семинара, заставило заполнить формулами всю доску и отняло почти всё оставшееся время семинара. Вот его упрощённая версия.

Представьте себе машину с одним входом и двумя выходами. Во входной порт можно поместить любую систему в любом квантовом состоянии. Например, в копир можно загрузить электрон. Машина выполняет ввод и выдаёт два идентичных электрона. Причём объекты на выходах идентичны не только между собой, но и с тем, что первоначально был на входе.

На входе один электрон с определённой волновой функцией. На выходе два идентичных электрона

Квантовый ксерокс

Если бы такую машину можно было построить, она позволила бы обойти нерушимый принцип неопределённости Гейзенберга. Допустим, мы хотим узнать одновременно положение и скорость электрона. Всё, что нам понадобится, — это скопировать его, а затем измерить положение одного клона и скорость другого. Но, конечно, такое невозможно в силу принципов квантовой механики.

К концу часа я успешно защитил парадокс Стивена и объяснил принцип нексерокопируемости, но у меня не осталось времени, чтобы изложить собственную точку зрения. И перед самым завершением семинара бестелесный механический голос Стивена провозгласил: «Так что теперь вы со мной согласны!» Его глаза озорно блестели.

Было очевидно, что я потерпел поражение. Я был повержен моим собственным дружественным огнём, недостатком времени и особенно быстрым остроумием Стивена. Покидая тем вечером Аспен, я задержался на Диффикалт-Крик и достал было свою нахлыстовую удочку. Однако моя любимая заводь оказалась полна шумных детей, плавающих на резиновой камере.

Часть III

Контратака

15

Сражение в Санта-Барбаре

К концу одного из пятничных рабочих дней в 1993 году все остальные сотрудники уже разошлись по домам. Только мы с Джоном и Ларусом ещё сидели в моём стэндфордском офисе, трепались и пили сваренный Ларусом кофе. Исландцы варят самый крепкий кофе в мире. По словам Ларуса, это как-то связано с их традицией засиживаться за выпивкой до глубокой ночи.

Ларус Торласиус, высокий исландский викинг (он говорит, что происходит не от норвежских воинов, а от ирландских рабов), был стэнфордским постдоком, только что защитившим диссертацию

в Принстоне. Джон Углум, техасец и республиканец (но не религиозного толка, а либертарианец в духе Айн Рэнд [94] ) был моим аспирантом. Несмотря на политические и культурные различия — сам я либеральный еврей из Южного Бронкса, — мы были приятелями с множеством чисто мужских развлечений: пить кофе (а иногда и что покрепче), спорить о политике, разговаривать о чёрных дырах. (Немного позже Аманда Пит, студентка из Новой Зеландии, расширит наше маленькое братство до трёх братьев и сестры.)

94

Айн Рэнд (Алиса Зиновьевна Розенбаум, 1905–1982) — американская писательница и философ российского происхождения. Ею создано философское направление в рамках либертарианской философии, названное объективизмом, из которого вытекает предельный индивидуализм и стремление максимально ограничить функции государства — Прим. перев.

К 1993 году чёрные дыры не только появились у физиков на экранах радаров, но и оказались в самом центре поля зрения. Отчасти причиной была провокационная статья, написанная примерно полутора годами ранее четырьмя известными американскими физиками-теоретиками. Курт Коллан, принстонский аристократ, ведущий учёный в области физики элементарных частиц, был с 1960-х годов влиятельным членом американского научного истеблишмента. (Он был научным руководителем диссертации Ларуса.) Энди Строминджер и Стив Гиддингс были более молодыми, напористыми профессорами Калифорнийского университета в Санта-Барбаре (UCSB). В то время я различал их по тому, что Гиддингс носил шорты, а Строминджер — подтяжки. Джефф Харви из Чикагского университета был (и остаётся) великим физиком, талантливым композитором (см. конец главы 24) и эстрадным комиком. Собирательно они были известны как CGHS (по инициалам), а описанную ими упрощённую версию чёрных дыр называли CGHS-дырами. Их совместная статья на короткое время стала сенсацией, отчасти потому авторы заявили, что наконец решили проблему потери информации при испарении чёрной дыры.

Что делало CGHS-теорию столь простой — оглядываясь назад, можно сказать обманчиво простой: она описывала вселенную, имеющую лишь одно измерение в пространстве. Их мир был даже проще Флэтландии, воображаемого двумерного мира Эдвина Эббота [95] . CGHS представили себе мир существ, которые живут на бесконечно тонкой линии. Эти создания были настолько простыми, насколько это возможно: не сложнее отдельных элементарных частиц. На одном конце этой одномерной вселенной находилась массивная чёрная дыра, достаточно тяжёлая и плотная, чтобы захватывать всё, что подходит к ней слишком близко.

95

Русский перевод: Эдвин Эббот. Флэтландия. Сферландия. — СПб.: Амфора, 2001. — Прим. перев.

Написанная CGHS статья содержала исключительно элегантный математический анализ хокинговского излучения, но где-то в этом анализе они ошиблись и утверждали, что квантовая механика исключает сингулярность, а с ней и горизонт. Мы с Аарусом и ещё одним коллегой, Йоргом Руссо, были среди нескольких человек, указавших на ошибку. Это сделало нас экспертами по CGHS-дырам. (Была даже особая версия CGHS-теории, названная RST-моделью по инициалам Руссо, Сасскинда и Торласиуса.)

Так вот, причиной, заставившей нас с Джоном и Аарусом задержаться в пятницу после работы, была надвигающаяся конференция, специально посвящённая загадками и парадоксам чёрных дыр. Она начиналась через две недели в Санта-Барбаре, где находился Институт теоретической физики (ITP) [96] при UCSB [97] . Как оценить ITP в качестве научного учреждения? Если коротко, то очень высоко. К 1993 году он стал активным центром исследований по чёрным дырам.

96

Сегодня он называется KITP (Kavli Institute for Theoretical Physics) — Институт теоретической физики Кавли.

97

Калифорнийский университет в Санта-Барбаре. — Прим. перев.

Поделиться с друзьями: