Большая энциклопедия техники
Шрифт:
Для повышения высоты полета пилот изменяет положение рычага «шаг – газ» вверх. С помощью гидроусилителя увеличиваются общий шаг (угол атаки) и потребная мощность несущего винта, которая сразу же становится больше располагаемой мощности силовых агрегатов. Вследствие этого частота вращения НВ начинает уменьшаться – НВ «нагружается» («затяжеляется»). Как только происходит уменьшение частоты вращения НВ и жестко связанной с винтом свободной турбины силового агрегата, регулятор частоты вращения свободной турбины увеличит подачу топлива в силовой агрегат. Вместе с тем при перемещении вверх рычага «шаг – газ» происходит механическое изменение положения регулятора частоты вращения турбокомпрессора на ускоренный режим работы системы.
В результате частота вращения турбокомпрессора и, как следствие, мощность двух двигателей синхронно увеличатся, а частота вращения несущего винта восстановит свое прежнее значение. Однако
Для обеспечения нормального (конструктивно-расчетного) разгона ротора турбокомпрессора рычаг управления регулятором подачи топлива требуется перемещать в плавном темпе. А поскольку этот рычаг кинематически связан с рычагом «шаг – газ», требуемый замедленный темп его перемещения не может быть обеспечен, особенно в усложненных и особо сложных полетных ситуациях. Для безопасности и автоматизации процесса разгона ГТД в систему его регулирования включен автомат приемистости, задающий подачу топлива при разгоне в зависимости от расчетных параметров рабочего процесса силового агрегата или в зависимости от времени. Время приемистости – время от начала изменения положения рычага управления силовой установкой до достижения заданной мощности. Приемистость двигателя делят на полную или частичную. Время полной приемистости некоторых эксплуатируемых вертолетных турбовальных ГТД (МИ 8) составляет 8—15 с, что ограничивает в некоторой мере маневренные возможности летательного аппарата. Процесс уменьшения мощности силового агрегата при достаточно плавном и медленном перемещении рычага управления на уменьшение режима – дросселирование. Время дросселирования – время от начала изменения положения рычага управления силового агрегата до достижения заданной мощности.
Процесс быстрого уменьшения мощности силового агрегата при резком изменении положения рычага управления принято называть сбросом мощности (газа). Этот процесс считается предельным случаем дросселирования. Скорость уменьшения подачи топлива при дросселировании силового агрегата имеет не менее важное значение в обеспечении надежности и устойчивости его работы, чем скорость увеличения подачи топлива при разгоне. При мгновенном уменьшении подачи топлива возникает опасность срыва пламени в камере сгорания и самовыключения силового агрегата. Для предупреждения этого процесса используется тот же автомат приемистости. Кроме того, в САУ включен клапан минимального давления. Благодаря этому при резком отклонении пилотом рычага «шаг – газ» вниз дросселирование двигателя осуществляется гораздо медленнее, по «своему» закону.
Для установления потребной мощности вертолета в различных полетных условиях двигательные агрегаты могут работать в следующих основных режимах:
1) малого газа, на котором обеспечивается устойчивая работа двигателей с минимальной частотой вращения турбокомпрессора для прогрева двигательной установки после запуска и при полете летательного аппарата на режиме самовращения НВ без выключения силового агрегата. Для ограничения температурных и вибрационных напряжений деталей двигателей время непрерывной работы на этом режиме не должно превышать 20 мин. Поскольку время работы силового агрегата на этом режиме не ограничивается, он, как правило, используется при выполнении маршрутных полетных заданий на дальность или специальных заданий на максимальную продолжительность полета;
2) номинальном, время непрерывной работы на котором ограничено по условиям прочности деталей двигателей – 1 ч. Данный режим используют при взлете вертолета и зависании у земли, наборе высоты, полете с максимальной скоростью и нормальной полетной массой в благоприятных атмосферных условиях. По расчетно-конструктивным условиям прочности деталей двигателей время непрерывной работы на этом режиме ограничено – 6 мин.
Взлетный режим используют при взлете, зависании и наборе высоты вертолета с полетной массой больше нормальной, в условиях повышенной температуры окружающего воздуха или барометрической высоты взлетной площадки, а также при полете на одном двигателе. В основном мощность двигателей на номинальном режиме составляет 85—90%, а на крейсерском – 70—80% от взлетной. При проведении взлета по ветру и полете на предельно малых допустимых высотах в штилевую погоду в воздухозаборники турбокомпрессора вертолета могут попадать горячие отработанные газы, посторонние
предметы (частицы песка и соль при полете над морем и т. д.). Посторонние предметы, попадая в турбокомпрессор, повреждают лопатки турбокомпрессора, что значительно уменьшает срок его службы и может привести к аварийным ситуациям. Отработанные газы ухудшают производительность турбокомпрессора. Поэтому на воздухозаборники устанавливаются специальные фильтры (уменьшающие производительность работы турбокомпрессора), а также на некоторых летательных аппаратах забор воздуха при взлете происходит через воздухозаборники или специальные устройства.После набора соответствующей высоты и разгона до определенной скорости вертолета данные устройства отключаются и работают основные воздухозаборники.
Несмотря на принятые технические усовершенствования, во избежание преждевременного износа турбокомпрессоров, выхода из строя силовых агрегатов и аварийных ситуаций не рекомендуется взлетать против ветра, затягивать взлет в штиль и летать на минимальных высотах над загрязненной и песчаной поверхностью с низкой скоростью. Также не рекомендуются низкие полеты над морем.
Корпус вертолета включает фюзеляж, стабилизатор, киль и иногда крыло. Форма фюзеляжа определяется конструктивной схемой, аэродинамической компоновкой, назначением и условиями эксплуатации летательного аппарата. Поскольку над центральной частью фюзеляжа располагаются гондолы силовых агрегатов, редукторного и вентиляторного отсеков и неубирающиеся шасси. Фюзеляж вертолета соосной схемы расположения винтов отличается меньшим удлинением, большей симметрией и компактностью. Для уменьшения лобового сопротивления фюзеляжа в горизонтальном полете ось вала НВ иногда выполняют наклоненной вперед относительно вертикальной оси вертолета на угол 4—6°. В результате этого фюзеляж на крейсерской скорости полета располагается приблизительно по потоку. Кроме того, фюзеляж некоторых одновинтовых вертолетов сконструирован так, что ось вала НВ отклонена от вертикальной оси вертолета вправо на угол 2—3°, если смотреть по полету сзади.
Благодаря этому уменьшается расчетное потребное для балансировки накренение вертолета вправо на зависании и малых скоростях полета, а также обеспечивается эффективный вертикальный взлет вертолета с одновременным отрывом от земли основных стоек шасси. Крыло не обязательно для проведения полета вертолета, а на режимах зависания, вертикальных перемещений, малых и сверхмалых скоростей горизонтального полета оно уменьшает весовую отдачу машины. При установке крыла на вертолет преследуют две основные цели: частичную разгрузку (до 20%) НВ на больших скоростях полета, подвеску различного оборудования. Крыло устанавливают в центральной части фюзеляжа позади центра масс вертолета. Стабилизатор предназначен для улучшения характеристик продольной балансировки и устойчивости вертолета. Применяют неуправляемый и управляемый стабилизаторы.
Управление стабилизатором сблокировано с управлением общим шагом несущего винта таким образом, что при увеличении общего шага НВ увеличивается и угол атаки стабилизатора. Это способствует улучшению продольной балансировки и управляемости вертолета.
Стабилизатор размещают на конце хвостовой балки для максимально возможного увеличения расстояния до центра масс вертолета, а также уменьшения вредного индуктивного воздействия НВ. На одновинтовых вертолетах с длинной хвостовой балкой площадь стабилизатора значительно меньше, чем на соосных. Компоновка соосного летательного аппарата, как правило, конструктивно не позволяет произвести необходимый вынос стабилизатора, для этого увеличивают его площадь для обеспечения хорошей продольной устойчивости. Киль при одновинтовой схеме летательного аппарата, так же как и крыло, не обязателен для полета вертолета, а на взлетно-посадочных режимах он ухудшает летные показатели вертолета. Однако при наличии концевой балки разумно превратить ее в киль. Благодаря этому достигаются две необходимые цели: частичная разгрузка РВ на больших скоростях полета и существенное повышение курсовой устойчивости вертолета. Кроме того, в киле размещается фенестрон.
Как правило, киль имеет толстый несимметричный профиль, трапециевидную форму в плане (при виде сбоку), расположен под углом 30—60° к продольной оси хвостовой балки и повернут влево относительно вертикальной плоскости симметрии фюзеляжа на угол 5—7°. На режиме горизонтального полета летательный аппарат создает боковую аэродинамическую силу, совпадающую с направлением силы тяги РВ.
Единственное средство обеспечения на соосном вертолете путевой устойчивости – его киль. Благодаря компактной аэродинамической компоновке планера вынос киля от центра масс вертолета сравнительно небольшой. Поэтому на соосных вертолетах устанавливают, как правило, мощное вертикальное оперение с рулями поворота. Последние помогает улучшению путевой управляемости вертолета на режимах горизонтального полета.