Большая энциклопедия техники
Шрифт:
Вариконд
Вариконд – сегнетокерамический конденсатор, имеющий резко выраженную нелинейную зависимость емкости от воздействующего на него напряжения.
С увеличением напряжения диэлектрическая проницаемость, а вместе с ней и электрическая емкость увеличиваются, доходят до максимума (при напряженности электрического поля внутри вариконда 50—250 В/мм) и потом снижаются. Емкость и степень нелинейности вариконда сильно зависят от температуры. С увеличением температуры до точки Кюри (для используемых сегнетоэлектриков 25—200 °С) они увеличиваются, достигая своего максимального значения; при последующем повышении температуры емкость резко понижается, а нелинейность пропадает. Вариконды имеют номинальные
Вариконды используют в радиоэлектронике и автоматике – для бесконтактного дистанционного автоматического управления, усиления электрической мощности (диэлектрический усилитель), параметрической стабилизации напряжения и тока, умножения, модуляции частоты, деления и др.
Вентиль электрический
Вентиль электрический – это особая часть выпрямительных устройств, которая и выполняет весь процесс выпрямления, с помощью периодичного пропуска тока в каком-либо одном направлении.
Вентили бывают механические, состоящие из подвижных частей, требующих присмотра человека. Части механического вентиля изнашиваются в процессе эксплуатации, что приводит к разрыву дуги и возникновению искры. Также существуют электрические вентили, которые, в свою очередь, делятся на ряд других видов вентилей: полупроводниковые, электролитические, электронные, ионно-вакуумные и ионные повышенного давления
Полупроводниковый вентиль между металлическими обкладками полупроводника играет роль электродов. В таком вентиле создаются два слоя разной проводимости – тонкий запирающий слой с малой проводимостью и толстый слой с нормальной проводимостью. При изменении величины тока и его направления меняется толщина слоев. Например, если в вентиле из закиси меди, силена, сульфида меди к электроду приложить отрицательный потенциал, который граничит с запирающим слоем, а к электроду будет сдвигаться в направлении толстого слоя, – это приведет к тому, что запирающий слой станет меньше, а его проводимость больше. При обратной полярности напряжения толщина запирающего слоя возрастает, а проводимость уменьшается. В этом случае через вентиль проходит малый обратный ток. В вентилях из кремния и германия проводимость определяется концентрацией свободных электронов, у которых запирающий слой играет роль анода, а слой с нормальной проводимостью – катода.
Более широкое применение из полупроводниковых вентилей получили селеновые, которые выпускаются в виде диска или пластины, где ток зависит от их размеров и колеблется от долей миллиампера до нескольких ампер. Данные вентили используются в выпрямителях малых токов при высоком напряжении и больших токов при малом напряжении. Чаще всего используется в зарядных гальванических устройствах, в схемах управления и регулирования, в схемах возбуждения синхронных машин, а также в сварочных схемах. Их преимуществом является высокий КПД (до 80%), долговечность (до нескольких десятков тысяч часов), нетребовательность в уходе, отсутствие вспомогательных цепей для включения.
Электролитические вентили состоят из двух металлических электродов. Они помещены в углекисло-аммонный электролит или раствор щелочи, где анодом служит любой металл, а катодом – тантал, алюминий, магний. Данные вентили практически вышли из употребления в наши дни.
Электронные вентили применяются для выпрямления малых токов в напряжении от десятков вольт до сотен киловольт. В области
малых напряжений они уступают полупроводниковым выпрямителям и чаще всего применяются в радиоприемных устройствах, маломощных системах электроники, в рентгеновских и измерительных установках для усиления и генерации тока.Ионно-вакуумные вентили заполняются каким-либо инертным газом (гелием, неоном, аргоном, криптоном, ксеноном) или парами ртути. Давление газа может колебаться от сотых долей до нескольких миллиметров ртутного столба. Катод всегда создает условия для выхода электронов, а анод электронов не излучает вовсе. Это приводит к тому, что электроны, направляемые к аноду, сталкиваются в вентилях с атомами газа и, создавая положительные ионы, компенсируют отрицательный заряд электронов.
Ионные вентили с накаленным катодом бывают двухэлектродные, называемые газотроном, и трехэлектродные, называемые тиротроном, где, помимо катода и анода, находится управляющая сетка. Газотроны и тиротроны получили большое применение в устройствах, где требуются выпрямители тока от нескольких ампер до сотен ампер при напряжениях для десятков киловольт. КПД таких устройств очень велико. В ртутных ионных вентилях с нормальной проходимостью в качестве катода применяется ртуть. Данные вентили распространены в системах электрической тяги, электропривода и для питания установок электролиза.
Они определяются количеством прямого тока и напряжениями (их внутренним уменьшением и обратным напряжением). Уменьшение напряжения характеризует и падение в мощности.
Вентильный электропривод
Вентильный электропривод – это электропривод, питающий электродвигатель и регулирующий его угловую скорость в преобразователях на управляемых электрических вентилях. Данный электропривод питает асинхронные и синхронные двигатели переменного тока и содержит управляемый выпрямитель.
Возбудитель электромашины
Возбудитель электромашины – это устройство, которое питает постоянным электрическим током обмотки возбуждения всех электрических машин.
Возбудителями называют тиристорные и транзисторные преобразователи, вытесняющие машинные возбудители. Возбудитель электрических машин позволяет осуществлять стабилизацию параметров электрических машин в статических и динамических режимах работы.
Вольтодобавочный трансформатор
Вольтодобавочный трансформатор – это трансформатор с переменным коэффициентом электрической трансформации, который включает своей вторичной обмоткой другой трансформатор, регулирующий и стабилизирующий напряжение в цепи нагрузки. Первичная обмотка вольтодобавочного трансформатора питается от обмотки низшего напряжения основного трансформатора.
Виды вольтодобавочных трансформаторов: линейные трансформаторы с поперечным регулированием, которые позволяют сдвигать напряжение сети по фазе без изменения его значения. Вследствие улучшения коэффициента мощности может достигаться снижение потерь напряжения в электрической сети, а также электрической энергии. Когда первичная обмотка автотрансформатора обеих фаз включается на линейное напряжение двух других фаз, значение не изменяется, а достигается также снижение потерь напряжения.
Вольтметр
Вольтметр – это электроизмерительный прибор напряжения сети, дающий показания в вольтах, киловольтах, милливольтах и микровольтах.
Вольтметры делятся на аналоговые (стрелочные) и цифровые. Последние имеют повышенную точность по сравнению с аналоговыми.
Важнейшим элементом вольтметра, в значительной мере определяющим метрологические характеристики прибора, является преобразователь.