Большая энциклопедия техники
Шрифт:
3. Заземление в энергетике – это устройство, соединяющее землю с электрической установкой и состоящее из заземлителя, в качестве которого используются металлические электроды в виде труб и стержней, и заземляющего проводника.
Заземление в энергетике условно разделяют на рабочее и защитное заземление.
Рабочее заземление осуществляется либо глухим соединением цепи с землей, либо соединением через предохранитель сопротивления или индуктивность.
Защитное заземление в энергетике не допускает поражения людей электрическим током при замыкании на корпус или на землю. Сюда относятся попавшие под высокое напряжение корпуса электромашин, трансформаторы, электроаппараты, распределительные устройства, кабели, оградительные металлические решетки.
Заземлители обычно изготавливаются из вертикальных стальных труб, диаметром до 50
Зарядное устройство
Зарядное устройство – это агрегат, дающий постоянный ток, необходимый для заряда аккумуляторных батарей, а также для непрерывного и прерываемого подзаряда.
Зарядное устройство способно заряжать одну группу аккумуляторов, так как сеть постоянного тока питается от другой группы. Заряд может применяться и одной батареей, снабженной двойным элементным коммутатором. У кислотных аккумуляторов в результате такого заряда напряжение может повыситься до 130% от номинального; у щелочных – до 150% от номинального. Чем меньше время заряда, тем больше соответственно должна быть мощность зарядного устройства. При непрерывном подзаряде зарядное устройство, питая сеть постоянного тока, производит подзаряд аккумуляторной батареи. Мощность зарядного устройства может быть даже чуть меньше, чем при системе «заряд – разряд». При прерывистом подзаряде зарядным устройством несколько часов питается сеть постоянного тока и происходит подзаряд батареи, остальную часть суток зарядное устройство, находясь в резерве, переводит питание сети на аккумуляторную батарею. В качестве зарядного устройства могут применяться двигатели-генераторы, ртутные или полупроводниковые выпрямители с регуляторами напряжения и автоматическими выключателями.
Зарядные устройства бывают однофазными при малых мощностях и трехфазными при больших мощностях.
Однофазные устройства имеют феррорезонансный стабилизатор, селеновый выпрямитель и измерительные приборы на стороне постоянного тока. Трехфазное устройство снабжается электронным регулятором напряжения, который связан с дросселем насыщения. Регулятор, изменяя величину электрического тока, регулирует напряжение. Зарядное устройство с селеновым выпрямителем отличается простотой включения, большим сроком службы. Все данные устройства различаются по своей мощности и комплектуются вплоть до зарядных станций, способных заряжать ряд аккумуляторных батарей.
Измерительный трансформатор
Измерительный трансформатор – это понижающий электрическую силу трансформатор, воздействующий на первичную обмотку и подключающий вторичную обмотку к электроизмерительным приборам или реле защиты. Измерительный трансформатор чаще всего применяется для безопасного измерения силы тока, напряжения, мощности энергии с помощью амперметров, вольтметров, ваттметров, имеющих относительно небольшие пределы измерений (до 5 А и 100 В) в цепях переменного тока высокого напряжения. Различают измерительные трансформаторы электрического напряжения и электрического тока.
Индуктор
Индуктор – это электромагнитное устройство, вырабатывающее переменный ток. В зависимости от области применения различают нагревательные, телефонные индукторы и индукторы электрической машины.
Индуктор нагревательный предназначен для индукционного нагрева тел вихревыми токами, возбуждаемыми переменным магнитным полем. Нагревательный индуктор состоит из двух основных частей: индуктирующего провода, создающего переменное электромагнитное поле и токоподводов для подключения индуктирующего провода к источнику электрической энергии.
Телефонный индуктор представляет собой магнитоэлектрическую машину, вырабатывающую переменный ток с частотой 18—21 Гц при напряжении 60—70 В. Применяются эти индукторы в телефонных аппаратах станций ручного обслуживания для посылки сигналов вызова и отбоя.
Индуктор электрической машины представляет часть магнитной цепи электрической машины, содержащей обмотку
возбуждения.Источники света
Источники света – это какие-либо объекты, которые излучают электромагнитную энергию в видимой части спектра.
К первому искусственному источнику света можно отнести огонь, добытый и сохраненный первобытным человеком. Позже источники света модернизировались, но изменения были не очень велики: появились факелы с животными жирами и воском, позже – с маслами и салом и т. д. Лишь в XIX в. появились стеариновые и парафиновые свечи, а также масляные и керосиновые лампы. К концу XIX в. начинают использовать в освещении горючие газы и калильные колпачки. Электрические источники тока вообще появились благодаря изучению В. В. Петровым в 1802 г. явления электрической дуги. Первым пригодным электрическим источником света была так называемая «свеча Яблочкова», созданная П. Н. Яблочковым в 1876 г. Спустя четыре года В. Н. Чиколев сконструировал регулятор сближения углей горящей дуговой лампы. Первая электрическая лампа накаливания появилась в 1872 г. Ее создателем был А. Н. Лодыгин. Позже он же разработал электрическую лампу накаливания с вольфрамовой нитью. В 1931 г. С. И. Вавилов доказал возможность создания фотолюминесцирующих ламп, что открывало возможность создания более экономичного типа ламп. К 1938 г. были сконструированы и запущены в производство люминесцентные лампы. Дальнейшие разработки электрических источников света ведутся в сторону увеличения экономичности, роста КПД, а также усиления безопасности таких ламп.
Электрические источники света можно разбить на несколько основных классов.
1. Лампы накаливания, к которым в свою очередь относятся лампы пустотные и лампы газонаполненные. В основе излучения ламп накаливания лежит использование теплового излучения. К особенностям излучателя можно отнести использование раскаленной электрическим током вольфрамовой нити. Применяются лампы накаливания во внутреннем и наружном освещении и в сигнализации.
2. Лампы газового разряда подразделяются на газосветные, люминесцентные и электродосветные.
Лампы газосветные также делятся на несколько видов. Это лампы тлеющего разряда с отрицательным свечением в атмосфере газа, использующие отрицательное свечение так называемых благородных газов и применяемые в сигнализации и для каких-либо других целей. Это трубки тлеющего разряда с положительным свечением в атмосфере газа, использующие свечение положительного столба тлеющего разряда в благородных газах и применяемые в сигнализации, световой рекламе и декоративном освещении. Это лампы дугового разряда в атмосфере газа, имеющие своей особенностью свечение положительного столба дугового разряда благородных газов и применяемые в тех же областях, как и предыдущие лампы. Это лампы дугового разряда в парах металлов при низком давлении, когда свечение происходит при низком давлении до 10– 3 мм рт. ст. паров натрия и ртути, применяемые для спектральных измерений. Это лампы дугового разряда в парах ртути при высоком давлении из стекла и кварца, когда свечение происходит при давлении от 200 до 1000 мм рт. ст., с целью применения в светотерапии, биологии, технике. Это лампы дугового разряда при сверхвысоком давлении с воздушным и водяным охлаждением, когда давление 25—300 атмосфер, и используются в прожекторном освещении. Это лампы дугового разряда в атмосфере тяжелых газов при сверхвысоком давлении, где свечение возможно при давлении от 10 до 30 атмосфер, применяемые для спектральных измерений. Это лампы импульсного разряда в атмосфере газов и паров металла, применяемые для фотосъемок и для стробоскопических исследований.
Лампы люминесцентные: тлеющего и дугового разряда – по своему принципу излучения электролюминесцентные и фотолюминесцентные – дают свечение газового разряда и люминофора под влиянием лучистой энергии при газовом разряде. Такие лампы используются в световой рекламе, декоративном и внутреннем освещении, а также для получения искусственного дневного света.
Лампы электродосветные бывают дуговыми с вольфрамовыми электродами в среде инертного газа, в парах ртути и аргона, с угольными электродами в среде атмосферного воздуха, с металлическими электродами и дуговыми интенсивными. Все применяются в прожекторных и оптических приборах.