Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (СТ)
Шрифт:

А. Г. Здравомыслов.

Структурные гранты

Структу'рные гра'нты, формы микро- и мезорельефа в районах распространения сезонно- и многолетнемёрзлых горных пород; то же, что полигональные образования .

Структурные зоны

Структу'рные зо'ны, участки земной коры, обычно линейной формы, характеризующиеся единым структурным планом и однотипными формами тектонических деформаций (например, зона разломов, зона надвигов, зона смятия и т.д.). Выделяются также структурно-фациальные зоны и структурно-формационные зоны, которые, кроме того, обладают специфическими особенностями состава слагающих их ассоциаций горных пород (фаций или формаций ). Каждая такая зона является показателем определённых

тектонических условий, при которых формировались составляющие её геологические комплексы.

Структурные карты

Структу'рные ка'рты, карты, отображающие какую-либо опорную геологическую поверхность (кровля или подошва стратиграфических подразделений, маркирующие слои и горизонты, поверхности несогласий, разрывных разрушений, залежей полезных ископаемых, водоносных горизонтов и т.п.), скрытую на глубине. При построении С. к. используются данные, полученные при геологической съёмке, бурении скважин, проведении горных выработок или при геофизических исследованиях, по которым устанавливаются высотные отметки опорной поверхности в разных точках площади исследования. Изображение формы и глубины залегания даётся с помощью стратоизогипс, методика построения которых аналогична изогипсам с учётом всех данных геологического строения территории (рис. ). Масштабы зависят от назначения карт: мелкомасштабные карты (1:1 000 000) применяются обычно для изображения поверхности фундамента платформ; крупномасштабные (1:50 000, 1:10 000 и крупнее) — для определения форм залегания и проектирования разведки и подсчёта запасов полезных ископаемых.

Важное значение в практике поисков, разведки и эксплуатации полезных ископаемых имеют также структурно-геологические карты, которые совмещают С. к. и карты геологического строения местности или какого-либо подземного горизонта; они имеют большое значение для проведения разведочных и эксплуатационных работ при разработке месторождений полезных ископаемых. См. также Геологические карты .

Лит.: Высоцкий И. В., Структурно-геологическая съемка, М. — Л., 1946; Михайлов А. Е., Структурная геология и геологическое картирование, 3 изд., М., 1973.

Г. Д. Ажгирей, А. Е. Михайлов.

1 — блок-диаграмма антиклинальной складки с нефтеносным пластом; 2 — структурная карта (вверху) и блок-диаграмма (внизу) этого же участка со снятой верхней частью пород по кровле нефтеносного пласта; цифрами указаны абсолютные высоты стратоизогипс в м .

Структурные террасы

Структу'рные терра'сы, структурно-денудационные террасы, террасовидные площадки, образующиеся в результате препарировки поверхности более стойких пластов в серии горизонтально залегающих слоев горных пород неодинаковой сопротивляемости выветриванию и денудации. См. также Террасы .

Структурные формулы

Структу'рные фо'рмулы в химии, средство изображения структуры химических соединений. С. ф. отражают взаимное расположение атомов в молекуле и порядок связи между ними. Для построения С. ф. используют буквенные символы элементов и штриховые изображения химических связей. В некоторых случаях в С. ф. указывают знаки полного или частичного заряда на атомах, прямыми и изогнутыми стрелками показывают индукционные и мезомерные электронные смещения (см. Мезомерия ).

Структурный анализ

Структу'рный ана'лиз, совокупность методов исследования структуры вещества. К С. а. относятся рентгеновский структурный анализ , рентгенография материалов , нейтронография , электронография , протонография (см. Теней эффект ) и др.

Структурный этаж

Структу'рный эта'ж (ярус), комплексы горных пород различного состава и стратиграфического объёма, связанные между собой единством структурного плана и тектонических деформаций, а также однотипностью проявлений магматизма и степени метаморфизма горных пород . Каждый С. э. отражает определённый этап тектонической эволюции той или иной территории (структурной зоны). Как правило. этажи разделяются угловыми несогласиями. Примеры крупных С. э.: складчатый фундамент и осадочный чехол платформ, собственно геосинклинальный С. э. и орогенный С. э. складчатых систем. Крупные С. э. иногда называются структурными комплексами.

Лит.: Богданов А. А., О термине «структурный этаж», «Бюлл. Московского общества испытателей природы. Отдел геологический», 1963, т. 38, № 1.

Структурометрия фотографическая

Структуроме'трия

фотографи'ческая,
учение об измерении изобразительных свойств фотографического материала, обусловленных дискретной структурой как непроявленного слоя фотографической эмульсии, так и проявленного почернения фотографического . С. ф. зародилась в рамках сенситометрии , и такие её понятия, как разрешающая способность фотографирующей системы и зернистость почернения , долгое время относились к числу величин, исследуемых при сенситометрических испытаниях. Выделение С. ф. в самостоятельный раздел фотографической метрологии завершилось лишь к концу 60-х гг. 20 в., когда в фотографию были перенесены многие понятия общей теории связи и информации теории , а фотографический материал стали рассматривать как один из элементов систем передачи, записи и воспроизведения изображения (наряду с телевизионными, электроннооптическими и другими элементами таких систем) и описывать в терминах, общих для всех этих элементов.

В С. ф., кроме упомянутого выше, изучают: частотно-контрастную характеристику (нередко называемую функцией передачи модуляции); гранулярность (объективно измеряемую микрофотометром неоднородность оптической плотности почернения D, обусловленную зернистостью его структуры и выражаемую средним квадратом флуктуации плотности почернения или его пропускания ), отношение сигнал/шум (отношение приращения D негатива, вызванного приращением экспозиции от объекта, т. е. «сигналом», к среднеквадратичной флуктуации D негатива, т. е. к «шуму»); спектр мощности шумов (распределение квадрата амплитуды флуктуаций D по пространственным частотам); квантовую эффективность детектирования (способность фотоматериала к выделению слабого сигнала при наличии шума; выражается частным от деления отношения сигнал/шум в полученном изображении на отношение сигнал/шум в действующем световом потоке при измерении его идеальным детектором). В С. ф. исследуют также информационные свойства фотографического материала, в частности информационную ёмкость (плотность записи в бит/ед. площади) и чувствительность информационную .

Лит.: Вендровски К. В., Айнгорн М. А., Минкевич И. Г., «Успехи научной фотографии», 1966, т. II, с. 171—221; Миз К., Джеймс Т., Теория фотографического процесса, пер. с англ., Л., 1973.

А. Л. Картужанский.

Структуры кристаллов

Структу'ры криста'ллов неорганических соединений, закономерное пространственное расположение атомов, ионов (иногда молекул), составляющих кристаллические вещества. Расшифровка С. к. — одна из основных задач кристаллографии .

В большинстве неорганических соединений молекул нет и имеет место взаимное проникновение бесконечных укладок из катионов и анионов (см. Кристаллическая решётка ). Наиболее прост случай структуры, в которой примитивная кубическая решётка (см. Браве решётка ) из анионов Cl проложена аналогичной решёткой из катионов Cs; они вставлены одна в другую так, что катион Cs оказывается в центре куба из 8 анионов Cl (и наоборот), т. е. координационное число (КЧ) равно 8 (рис. 1, a). Зачастую разные вещества имеют структуры одинаковые с точностью до подобия (см. Кристаллохимия ), так, структурой CsCI обладают CsBr, CsI, а также галогениды таллия и аммония, и все эти структуры объединяются в единый структурный тип CsCI. Понятие структурный тип — один из критериев сходства или различия строения кристаллов; именуют его обычно по названию одного из веществ, кристаллизующихся в нём. Ниже даётся краткое описание некоторых важнейших структурных типов.

В структурном типе галита NaCI и катионы, и анионы расположены по закону кубической плотнейшей упаковки (см. Упаковки плотнейшие ). Каждый катион окружен 6 анионами, и наоборот, т. е. КЧ=6. координационный многогранник — октаэдр (рис. 1,б). В структуре галита кристаллизируются почти все галогениды щелочных (LiF, LiCI,..., NaF, NaCI,..., RbF, RbCI,...) и окислы щёлочноземельных элементов (MgO, CaO и др.), важнейший сульфид PbS и др.

В структурном типе сфалерита ZnS, построенном также на основе закона кубической плотнейшей упаковки, атомы Zn с КЧ = 4 находятся в S-тетраэдрах и наоборот. Этот тип характерен для соединений с существенно ковалентными связями; в нём кристаллизируются CuCI, Cul, HgS и др., а также ряд важнейших полупроводниковых соединений (CdS, GaAs и др.) (рис. 1,в).

Поделиться с друзьями: